sklearn.utils.validation.check_is_fitted
-
sklearn.utils.validation.check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=<built-in function all>)
[source] -
Perform is_fitted validation for estimator.
Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore) and otherwise raises a NotFittedError with the given message.
This utility is meant to be used internally by estimators themselves, typically in their own predict / transform methods.
- Parameters
-
-
estimatorestimator instance
-
estimator instance for which the check is performed.
-
attributesstr, list or tuple of str, default=None
-
Attribute name(s) given as string or a list/tuple of strings Eg.:
["coef_", "estimator_", ...], "coef_"
If
None
,estimator
is considered fitted if there exist an attribute that ends with a underscore and does not start with double underscore. -
msgstr, default=None
-
The default error message is, “This %(name)s instance is not fitted yet. Call ‘fit’ with appropriate arguments before using this estimator.”
For custom messages if “%(name)s” is present in the message string, it is substituted for the estimator name.
Eg. : “Estimator, %(name)s, must be fitted before sparsifying”.
-
all_or_anycallable, {all, any}, default=all
-
Specify whether all or any of the given attributes must exist.
-
- Returns
-
- None
- Raises
-
- NotFittedError
-
If the attributes are not found.
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.utils.validation.check_is_fitted.html