sklearn.cluster.estimate_bandwidth
-
sklearn.cluster.estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0, n_jobs=None)
[source] -
Estimate the bandwidth to use with the mean-shift algorithm.
That this function takes time at least quadratic in n_samples. For large datasets, it’s wise to set that parameter to a small value.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input points.
-
quantilefloat, default=0.3
-
should be between [0, 1] 0.5 means that the median of all pairwise distances is used.
-
n_samplesint, default=None
-
The number of samples to use. If not given, all samples are used.
-
random_stateint, RandomState instance, default=None
-
The generator used to randomly select the samples from input points for bandwidth estimation. Use an int to make the randomness deterministic. See Glossary.
-
n_jobsint, default=None
-
The number of parallel jobs to run for neighbors search.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
-
- Returns
-
-
bandwidthfloat
-
The bandwidth parameter.
-
Examples using sklearn.cluster.estimate_bandwidth
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.cluster.estimate_bandwidth.html