sklearn.decomposition.DictionaryLearning
-
class sklearn.decomposition.DictionaryLearning(n_components=None, *, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=None, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000)
[source] -
Dictionary learning
Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.
Solves the optimization problem:
(U^*,V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components
Read more in the User Guide.
- Parameters
-
-
n_componentsint, default=n_features
-
Number of dictionary elements to extract.
-
alphafloat, default=1.0
-
Sparsity controlling parameter.
-
max_iterint, default=1000
-
Maximum number of iterations to perform.
-
tolfloat, default=1e-8
-
Tolerance for numerical error.
-
fit_algorithm{‘lars’, ‘cd’}, default=’lars’
-
-
'lars'
: uses the least angle regression method to solve the lasso problem (lars_path
); -
'cd'
: uses the coordinate descent method to compute the Lasso solution (Lasso
). Lars will be faster if the estimated components are sparse.
New in version 0.17: cd coordinate descent method to improve speed.
-
-
transform_algorithm{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’
-
Algorithm used to transform the data:
-
'lars'
: uses the least angle regression method (lars_path
); -
'lasso_lars'
: uses Lars to compute the Lasso solution. -
'lasso_cd'
: uses the coordinate descent method to compute the Lasso solution (Lasso
).'lasso_lars'
will be faster if the estimated components are sparse. -
'omp'
: uses orthogonal matching pursuit to estimate the sparse solution. -
'threshold'
: squashes to zero all coefficients less than alpha from the projectiondictionary * X'
.
New in version 0.17: lasso_cd coordinate descent method to improve speed.
-
-
transform_n_nonzero_coefsint, default=None
-
Number of nonzero coefficients to target in each column of the solution. This is only used by
algorithm='lars'
andalgorithm='omp'
and is overridden byalpha
in theomp
case. IfNone
, thentransform_n_nonzero_coefs=int(n_features / 10)
. -
transform_alphafloat, default=None
-
If
algorithm='lasso_lars'
oralgorithm='lasso_cd'
,alpha
is the penalty applied to the L1 norm. Ifalgorithm='threshold'
,alpha
is the absolute value of the threshold below which coefficients will be squashed to zero. Ifalgorithm='omp'
,alpha
is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overridesn_nonzero_coefs
. IfNone
, default to 1.0 -
n_jobsint or None, default=None
-
Number of parallel jobs to run.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details. -
code_initndarray of shape (n_samples, n_components), default=None
-
Initial value for the code, for warm restart.
-
dict_initndarray of shape (n_components, n_features), default=None
-
Initial values for the dictionary, for warm restart.
-
verbosebool, default=False
-
To control the verbosity of the procedure.
-
split_signbool, default=False
-
Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers.
-
random_stateint, RandomState instance or None, default=None
-
Used for initializing the dictionary when
dict_init
is not specified, randomly shuffling the data whenshuffle
is set toTrue
, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See Glossary. -
positive_codebool, default=False
-
Whether to enforce positivity when finding the code.
New in version 0.20.
-
positive_dictbool, default=False
-
Whether to enforce positivity when finding the dictionary
New in version 0.20.
-
transform_max_iterint, default=1000
-
Maximum number of iterations to perform if
algorithm='lasso_cd'
or'lasso_lars'
.New in version 0.22.
-
- Attributes
-
-
components_ndarray of shape (n_components, n_features)
-
dictionary atoms extracted from the data
-
error_array
-
vector of errors at each iteration
-
n_iter_int
-
Number of iterations run.
-
Notes
References:
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
Examples
>>> import numpy as np >>> from sklearn.datasets import make_sparse_coded_signal >>> from sklearn.decomposition import DictionaryLearning >>> X, dictionary, code = make_sparse_coded_signal( ... n_samples=100, n_components=15, n_features=20, n_nonzero_coefs=10, ... random_state=42, ... ) >>> dict_learner = DictionaryLearning( ... n_components=15, transform_algorithm='lasso_lars', random_state=42, ... ) >>> X_transformed = dict_learner.fit_transform(X)
We can check the level of sparsity of
X_transformed
:>>> np.mean(X_transformed == 0) 0.88...
We can compare the average squared euclidean norm of the reconstruction error of the sparse coded signal relative to the squared euclidean norm of the original signal:
>>> X_hat = X_transformed @ dict_learner.components_ >>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1)) 0.07...
Methods
fit
(X[, y])Fit the model from data in X.
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Encode the data as a sparse combination of the dictionary atoms.
-
fit(X, y=None)
[source] -
Fit the model from data in X.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Training vector, where
n_samples
in the number of samples andn_features
is the number of features. -
yIgnored
-
- Returns
-
-
selfobject
-
Returns the object itself.
-
-
fit_transform(X, y=None, **fit_params)
[source] -
Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
-
Target values (None for unsupervised transformations).
-
**fit_paramsdict
-
Additional fit parameters.
-
- Returns
-
-
X_newndarray array of shape (n_samples, n_features_new)
-
Transformed array.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
-
transform(X)
[source] -
Encode the data as a sparse combination of the dictionary atoms.
Coding method is determined by the object parameter
transform_algorithm
.- Parameters
-
-
Xndarray of shape (n_samples, n_features)
-
Test data to be transformed, must have the same number of features as the data used to train the model.
-
- Returns
-
-
X_newndarray of shape (n_samples, n_components)
-
Transformed data.
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.decomposition.DictionaryLearning.html