Comparing randomized search and grid search for hyperparameter estimation
Compare randomized search and grid search for optimizing hyperparameters of a linear SVM with SGD training. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff).
The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower.
The performance is may slightly worse for the randomized search, and is likely due to a noise effect and would not carry over to a held-out test set.
Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important.
Out:
RandomizedSearchCV took 32.09 seconds for 20 candidates parameter settings. Model with rank: 1 Mean validation score: 0.920 (std: 0.028) Parameters: {'alpha': 0.07316411520495676, 'average': False, 'l1_ratio': 0.29007760721044407} Model with rank: 2 Mean validation score: 0.920 (std: 0.029) Parameters: {'alpha': 0.0005223493320259539, 'average': True, 'l1_ratio': 0.7936977033574206} Model with rank: 3 Mean validation score: 0.918 (std: 0.031) Parameters: {'alpha': 0.00025790124268693137, 'average': True, 'l1_ratio': 0.5699649107012649} GridSearchCV took 192.81 seconds for 100 candidate parameter settings. Model with rank: 1 Mean validation score: 0.931 (std: 0.026) Parameters: {'alpha': 0.0001, 'average': True, 'l1_ratio': 0.0} Model with rank: 2 Mean validation score: 0.928 (std: 0.030) Parameters: {'alpha': 0.0001, 'average': True, 'l1_ratio': 0.1111111111111111} Model with rank: 3 Mean validation score: 0.927 (std: 0.026) Parameters: {'alpha': 0.0001, 'average': True, 'l1_ratio': 0.5555555555555556}
print(__doc__) import numpy as np from time import time import scipy.stats as stats from sklearn.utils.fixes import loguniform from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.linear_model import SGDClassifier # get some data X, y = load_digits(return_X_y=True) # build a classifier clf = SGDClassifier(loss='hinge', penalty='elasticnet', fit_intercept=True) # Utility function to report best scores def report(results, n_top=3): for i in range(1, n_top + 1): candidates = np.flatnonzero(results['rank_test_score'] == i) for candidate in candidates: print("Model with rank: {0}".format(i)) print("Mean validation score: {0:.3f} (std: {1:.3f})" .format(results['mean_test_score'][candidate], results['std_test_score'][candidate])) print("Parameters: {0}".format(results['params'][candidate])) print("") # specify parameters and distributions to sample from param_dist = {'average': [True, False], 'l1_ratio': stats.uniform(0, 1), 'alpha': loguniform(1e-4, 1e0)} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.cv_results_) # use a full grid over all parameters param_grid = {'average': [True, False], 'l1_ratio': np.linspace(0, 1, num=10), 'alpha': np.power(10, np.arange(-4, 1, dtype=float))} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.cv_results_['params']))) report(grid_search.cv_results_)
Total running time of the script: ( 3 minutes 44.991 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/model_selection/plot_randomized_search.html