Pipelining: chaining a PCA and a logistic regression
The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction.
We use a GridSearchCV to set the dimensionality of the PCA
Out:
Best parameter (CV score=0.920): {'logistic__C': 0.046415888336127774, 'pca__n_components': 45}
print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import datasets from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV # Define a pipeline to search for the best combination of PCA truncation # and classifier regularization. pca = PCA() # set the tolerance to a large value to make the example faster logistic = LogisticRegression(max_iter=10000, tol=0.1) pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) X_digits, y_digits = datasets.load_digits(return_X_y=True) # Parameters of pipelines can be set using ‘__’ separated parameter names: param_grid = { 'pca__n_components': [5, 15, 30, 45, 64], 'logistic__C': np.logspace(-4, 4, 4), } search = GridSearchCV(pipe, param_grid, n_jobs=-1) search.fit(X_digits, y_digits) print("Best parameter (CV score=%0.3f):" % search.best_score_) print(search.best_params_) # Plot the PCA spectrum pca.fit(X_digits) fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6)) ax0.plot(np.arange(1, pca.n_components_ + 1), pca.explained_variance_ratio_, '+', linewidth=2) ax0.set_ylabel('PCA explained variance ratio') ax0.axvline(search.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') ax0.legend(prop=dict(size=12)) # For each number of components, find the best classifier results results = pd.DataFrame(search.cv_results_) components_col = 'param_pca__n_components' best_clfs = results.groupby(components_col).apply( lambda g: g.nlargest(1, 'mean_test_score')) best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score', legend=False, ax=ax1) ax1.set_ylabel('Classification accuracy (val)') ax1.set_xlabel('n_components') plt.xlim(-1, 70) plt.tight_layout() plt.show()
Total running time of the script: ( 0 minutes 11.811 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/compose/plot_digits_pipe.html