sklearn.isotonic.isotonic_regression
-
sklearn.isotonic.isotonic_regression(y, *, sample_weight=None, y_min=None, y_max=None, increasing=True)
[source] -
Solve the isotonic regression model.
Read more in the User Guide.
- Parameters
-
-
yarray-like of shape (n_samples,)
-
The data.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Weights on each point of the regression. If None, weight is set to 1 (equal weights).
-
y_minfloat, default=None
-
Lower bound on the lowest predicted value (the minimum value may still be higher). If not set, defaults to -inf.
-
y_maxfloat, default=None
-
Upper bound on the highest predicted value (the maximum may still be lower). If not set, defaults to +inf.
-
increasingbool, default=True
-
Whether to compute
y_
is increasing (if set to True) or decreasing (if set to False)
-
- Returns
-
-
y_list of floats
-
Isotonic fit of y.
-
References
“Active set algorithms for isotonic regression; A unifying framework” by Michael J. Best and Nilotpal Chakravarti, section 3.
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.isotonic.isotonic_regression.html