sklearn.linear_model.RANSACRegressor
-
class sklearn.linear_model.RANSACRegressor(base_estimator=None, *, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, max_skips=inf, stop_n_inliers=inf, stop_score=inf, stop_probability=0.99, loss='absolute_loss', random_state=None)
[source] -
RANSAC (RANdom SAmple Consensus) algorithm.
RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set.
Read more in the User Guide.
- Parameters
-
-
base_estimatorobject, default=None
-
Base estimator object which implements the following methods:
-
fit(X, y)
: Fit model to given training data and target values. -
score(X, y)
: Returns the mean accuracy on the given test data, which is used for the stop criterion defined bystop_score
. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. -
predict(X)
: Returns predicted values using the linear model, which is used to compute residual error using loss function.
If
base_estimator
is None, thenLinearRegression
is used for target values of dtype float.Note that the current implementation only supports regression estimators.
-
-
min_samplesint (>= 1) or float ([0, 1]), default=None
-
Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for
min_samples >= 1
, treated as a relative numberceil(min_samples * X.shape[0]
) formin_samples < 1
. This is typically chosen as the minimal number of samples necessary to estimate the givenbase_estimator
. By default asklearn.linear_model.LinearRegression()
estimator is assumed andmin_samples
is chosen asX.shape[1] + 1
. -
residual_thresholdfloat, default=None
-
Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values
y
. -
is_data_validcallable, default=None
-
This function is called with the randomly selected data before the model is fitted to it:
is_data_valid(X, y)
. If its return value is False the current randomly chosen sub-sample is skipped. -
is_model_validcallable, default=None
-
This function is called with the estimated model and the randomly selected data:
is_model_valid(model, X, y)
. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than withis_data_valid
.is_model_valid
should therefore only be used if the estimated model is needed for making the rejection decision. -
max_trialsint, default=100
-
Maximum number of iterations for random sample selection.
-
max_skipsint, default=np.inf
-
Maximum number of iterations that can be skipped due to finding zero inliers or invalid data defined by
is_data_valid
or invalid models defined byis_model_valid
.New in version 0.19.
-
stop_n_inliersint, default=np.inf
-
Stop iteration if at least this number of inliers are found.
-
stop_scorefloat, default=np.inf
-
Stop iteration if score is greater equal than this threshold.
-
stop_probabilityfloat in range [0, 1], default=0.99
-
RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):
N >= log(1 - probability) / log(1 - e**m)
where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples.
-
lossstring, callable, default=’absolute_loss’
-
String inputs, “absolute_loss” and “squared_loss” are supported which find the absolute loss and squared loss per sample respectively.
If
loss
is a callable, then it should be a function that takes two arrays as inputs, the true and predicted value and returns a 1-D array with the i-th value of the array corresponding to the loss onX[i]
.If the loss on a sample is greater than the
residual_threshold
, then this sample is classified as an outlier.New in version 0.18.
-
random_stateint, RandomState instance, default=None
-
The generator used to initialize the centers. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Attributes
-
-
estimator_object
-
Best fitted model (copy of the
base_estimator
object). -
n_trials_int
-
Number of random selection trials until one of the stop criteria is met. It is always
<= max_trials
. -
inlier_mask_bool array of shape [n_samples]
-
Boolean mask of inliers classified as
True
. -
n_skips_no_inliers_int
-
Number of iterations skipped due to finding zero inliers.
New in version 0.19.
-
n_skips_invalid_data_int
-
Number of iterations skipped due to invalid data defined by
is_data_valid
.New in version 0.19.
-
n_skips_invalid_model_int
-
Number of iterations skipped due to an invalid model defined by
is_model_valid
.New in version 0.19.
-
References
Examples
>>> from sklearn.linear_model import RANSACRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression( ... n_samples=200, n_features=2, noise=4.0, random_state=0) >>> reg = RANSACRegressor(random_state=0).fit(X, y) >>> reg.score(X, y) 0.9885... >>> reg.predict(X[:1,]) array([-31.9417...])
Methods
fit
(X, y[, sample_weight])Fit estimator using RANSAC algorithm.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the estimated model.
score
(X, y)Returns the score of the prediction.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y, sample_weight=None)
[source] -
Fit estimator using RANSAC algorithm.
- Parameters
-
-
Xarray-like or sparse matrix, shape [n_samples, n_features]
-
Training data.
-
yarray-like of shape (n_samples,) or (n_samples, n_targets)
-
Target values.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Individual weights for each sample raises error if sample_weight is passed and base_estimator fit method does not support it.
New in version 0.18.
-
- Raises
-
- ValueError
-
If no valid consensus set could be found. This occurs if
is_data_valid
andis_model_valid
return False for allmax_trials
randomly chosen sub-samples.
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
predict(X)
[source] -
Predict using the estimated model.
This is a wrapper for
estimator_.predict(X)
.- Parameters
-
-
Xnumpy array of shape [n_samples, n_features]
-
- Returns
-
-
yarray, shape = [n_samples] or [n_samples, n_targets]
-
Returns predicted values.
-
-
score(X, y)
[source] -
Returns the score of the prediction.
This is a wrapper for
estimator_.score(X, y)
.- Parameters
-
-
Xnumpy array or sparse matrix of shape [n_samples, n_features]
-
Training data.
-
yarray, shape = [n_samples] or [n_samples, n_targets]
-
Target values.
-
- Returns
-
-
zfloat
-
Score of the prediction.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
Examples using sklearn.linear_model.RANSACRegressor
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.RANSACRegressor.html