L1 Penalty and Sparsity in Logistic Regression
Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elastic-Net penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. As expected, the Elastic-Net penalty sparsity is between that of L1 and L2.
We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C.
Out:
C=1.00 Sparsity with L1 penalty: 6.25% Sparsity with Elastic-Net penalty: 4.69% Sparsity with L2 penalty: 4.69% Score with L1 penalty: 0.90 Score with Elastic-Net penalty: 0.90 Score with L2 penalty: 0.90 C=0.10 Sparsity with L1 penalty: 29.69% Sparsity with Elastic-Net penalty: 12.50% Sparsity with L2 penalty: 4.69% Score with L1 penalty: 0.90 Score with Elastic-Net penalty: 0.90 Score with L2 penalty: 0.90 C=0.01 Sparsity with L1 penalty: 84.38% Sparsity with Elastic-Net penalty: 68.75% Sparsity with L2 penalty: 4.69% Score with L1 penalty: 0.86 Score with Elastic-Net penalty: 0.88 Score with L2 penalty: 0.89
print(__doc__) # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Andreas Mueller <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler X, y = datasets.load_digits(return_X_y=True) X = StandardScaler().fit_transform(X) # classify small against large digits y = (y > 4).astype(int) l1_ratio = 0.5 # L1 weight in the Elastic-Net regularization fig, axes = plt.subplots(3, 3) # Set regularization parameter for i, (C, axes_row) in enumerate(zip((1, 0.1, 0.01), axes)): # turn down tolerance for short training time clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01, solver='saga') clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01, solver='saga') clf_en_LR = LogisticRegression(C=C, penalty='elasticnet', solver='saga', l1_ratio=l1_ratio, tol=0.01) clf_l1_LR.fit(X, y) clf_l2_LR.fit(X, y) clf_en_LR.fit(X, y) coef_l1_LR = clf_l1_LR.coef_.ravel() coef_l2_LR = clf_l2_LR.coef_.ravel() coef_en_LR = clf_en_LR.coef_.ravel() # coef_l1_LR contains zeros due to the # L1 sparsity inducing norm sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100 sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100 sparsity_en_LR = np.mean(coef_en_LR == 0) * 100 print("C=%.2f" % C) print("{:<40} {:.2f}%".format("Sparsity with L1 penalty:", sparsity_l1_LR)) print("{:<40} {:.2f}%".format("Sparsity with Elastic-Net penalty:", sparsity_en_LR)) print("{:<40} {:.2f}%".format("Sparsity with L2 penalty:", sparsity_l2_LR)) print("{:<40} {:.2f}".format("Score with L1 penalty:", clf_l1_LR.score(X, y))) print("{:<40} {:.2f}".format("Score with Elastic-Net penalty:", clf_en_LR.score(X, y))) print("{:<40} {:.2f}".format("Score with L2 penalty:", clf_l2_LR.score(X, y))) if i == 0: axes_row[0].set_title("L1 penalty") axes_row[1].set_title("Elastic-Net\nl1_ratio = %s" % l1_ratio) axes_row[2].set_title("L2 penalty") for ax, coefs in zip(axes_row, [coef_l1_LR, coef_en_LR, coef_l2_LR]): ax.imshow(np.abs(coefs.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) ax.set_xticks(()) ax.set_yticks(()) axes_row[0].set_ylabel('C = %s' % C) plt.show()
Total running time of the script: ( 0 minutes 0.723 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html