sklearn.manifold.LocallyLinearEmbedding
-
class sklearn.manifold.LocallyLinearEmbedding(*, n_neighbors=5, n_components=2, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm='auto', random_state=None, n_jobs=None)
[source] -
Locally Linear Embedding
Read more in the User Guide.
- Parameters
-
-
n_neighborsint, default=5
-
number of neighbors to consider for each point.
-
n_componentsint, default=2
-
number of coordinates for the manifold
-
regfloat, default=1e-3
-
regularization constant, multiplies the trace of the local covariance matrix of the distances.
-
eigen_solver{‘auto’, ‘arpack’, ‘dense’}, default=’auto’
-
auto : algorithm will attempt to choose the best method for input data
-
arpackuse arnoldi iteration in shift-invert mode.
-
For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results.
-
denseuse standard dense matrix operations for the eigenvalue
-
decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems.
-
-
tolfloat, default=1e-6
-
Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.
-
max_iterint, default=100
-
maximum number of iterations for the arpack solver. Not used if eigen_solver==’dense’.
-
method{‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}, default=’standard’
-
-
standarduse the standard locally linear embedding algorithm. see
-
reference [1]
-
hessianuse the Hessian eigenmap method. This method requires
-
n_neighbors > n_components * (1 + (n_components + 1) / 2
see reference [2] -
modifieduse the modified locally linear embedding algorithm.
-
see reference [3]
-
ltsause local tangent space alignment algorithm
-
see reference [4]
-
-
hessian_tolfloat, default=1e-4
-
Tolerance for Hessian eigenmapping method. Only used if
method == 'hessian'
-
modified_tolfloat, default=1e-12
-
Tolerance for modified LLE method. Only used if
method == 'modified'
-
neighbors_algorithm{‘auto’, ‘brute’, ‘kd_tree’, ‘ball_tree’}, default=’auto’
-
algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance
-
random_stateint, RandomState instance, default=None
-
Determines the random number generator when
eigen_solver
== ‘arpack’. Pass an int for reproducible results across multiple function calls. See :term:Glossary <random_state>
. -
n_jobsint or None, default=None
-
The number of parallel jobs to run.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
-
- Attributes
-
-
embedding_array-like, shape [n_samples, n_components]
-
Stores the embedding vectors
-
reconstruction_error_float
-
Reconstruction error associated with
embedding_
-
nbrs_NearestNeighbors object
-
Stores nearest neighbors instance, including BallTree or KDtree if applicable.
-
References
-
1
-
Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).
-
2
-
Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).
-
3
-
Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
-
4
-
Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)
Examples
>>> from sklearn.datasets import load_digits >>> from sklearn.manifold import LocallyLinearEmbedding >>> X, _ = load_digits(return_X_y=True) >>> X.shape (1797, 64) >>> embedding = LocallyLinearEmbedding(n_components=2) >>> X_transformed = embedding.fit_transform(X[:100]) >>> X_transformed.shape (100, 2)
Methods
fit
(X[, y])Compute the embedding vectors for data X
fit_transform
(X[, y])Compute the embedding vectors for data X and transform X.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Transform new points into embedding space.
-
fit(X, y=None)
[source] -
Compute the embedding vectors for data X
- Parameters
-
-
Xarray-like of shape [n_samples, n_features]
-
training set.
-
yIgnored
-
- Returns
-
-
selfreturns an instance of self.
-
-
fit_transform(X, y=None)
[source] -
Compute the embedding vectors for data X and transform X.
- Parameters
-
-
Xarray-like of shape [n_samples, n_features]
-
training set.
-
yIgnored
-
- Returns
-
-
X_newarray-like, shape (n_samples, n_components)
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
-
transform(X)
[source] -
Transform new points into embedding space.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
- Returns
-
-
X_newarray, shape = [n_samples, n_components]
-
Notes
Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs)
Examples using sklearn.manifold.LocallyLinearEmbedding
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html