sklearn.neighbors.KernelDensity
-
class sklearn.neighbors.KernelDensity(*, bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True, leaf_size=40, metric_params=None)
[source] -
Kernel Density Estimation.
Read more in the User Guide.
- Parameters
-
-
bandwidthfloat, default=1.0
-
The bandwidth of the kernel.
-
algorithm{‘kd_tree’, ‘ball_tree’, ‘auto’}, default=’auto’
-
The tree algorithm to use.
-
kernel{‘gaussian’, ‘tophat’, ‘epanechnikov’, ‘exponential’, ‘linear’, ‘cosine’}, default=’gaussian’
-
The kernel to use.
-
metricstr, default=’euclidian’
-
The distance metric to use. Note that not all metrics are valid with all algorithms. Refer to the documentation of
BallTree
andKDTree
for a description of available algorithms. Note that the normalization of the density output is correct only for the Euclidean distance metric. Default is ‘euclidean’. -
atolfloat, default=0
-
The desired absolute tolerance of the result. A larger tolerance will generally lead to faster execution.
-
rtolfloat, default=0
-
The desired relative tolerance of the result. A larger tolerance will generally lead to faster execution.
-
breadth_firstbool, default=True
-
If true (default), use a breadth-first approach to the problem. Otherwise use a depth-first approach.
-
leaf_sizeint, default=40
-
Specify the leaf size of the underlying tree. See
BallTree
orKDTree
for details. -
metric_paramsdict, default=None
-
Additional parameters to be passed to the tree for use with the metric. For more information, see the documentation of
BallTree
orKDTree
.
-
- Attributes
-
-
tree_BinaryTree instance
-
The tree algorithm for fast generalized N-point problems.
-
See also
-
sklearn.neighbors.KDTree
-
K-dimensional tree for fast generalized N-point problems.
-
sklearn.neighbors.BallTree
-
Ball tree for fast generalized N-point problems.
Examples
Compute a gaussian kernel density estimate with a fixed bandwidth.
>>> import numpy as np >>> rng = np.random.RandomState(42) >>> X = rng.random_sample((100, 3)) >>> kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(X) >>> log_density = kde.score_samples(X[:3]) >>> log_density array([-1.52955942, -1.51462041, -1.60244657])
Methods
fit
(X[, y, sample_weight])Fit the Kernel Density model on the data.
get_params
([deep])Get parameters for this estimator.
sample
([n_samples, random_state])Generate random samples from the model.
score
(X[, y])Compute the total log probability density under the model.
Evaluate the log density model on the data.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y=None, sample_weight=None)
[source] -
Fit the Kernel Density model on the data.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
List of n_features-dimensional data points. Each row corresponds to a single data point.
-
yNone
-
Ignored. This parameter exists only for compatibility with
Pipeline
. -
sample_weightarray-like of shape (n_samples,), default=None
-
List of sample weights attached to the data X.
New in version 0.20.
-
- Returns
-
-
selfobject
-
Returns instance of object.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
sample(n_samples=1, random_state=None)
[source] -
Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
- Parameters
-
-
n_samplesint, default=1
-
Number of samples to generate.
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation used to generate random samples. Pass an int for reproducible results across multiple function calls. See :term:
Glossary <random_state>
.
-
- Returns
-
-
Xarray-like of shape (n_samples, n_features)
-
List of samples.
-
-
score(X, y=None)
[source] -
Compute the total log probability density under the model.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
List of n_features-dimensional data points. Each row corresponds to a single data point.
-
yNone
-
Ignored. This parameter exists only for compatibility with
Pipeline
.
-
- Returns
-
-
logprobfloat
-
Total log-likelihood of the data in X. This is normalized to be a probability density, so the value will be low for high-dimensional data.
-
-
score_samples(X)
[source] -
Evaluate the log density model on the data.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
An array of points to query. Last dimension should match dimension of training data (n_features).
-
- Returns
-
-
densityndarray of shape (n_samples,)
-
The array of log(density) evaluations. These are normalized to be probability densities, so values will be low for high-dimensional data.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
Examples using sklearn.neighbors.KernelDensity
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.KernelDensity.html