Feature agglomeration vs. univariate selection
This example compares 2 dimensionality reduction strategies:
- univariate feature selection with Anova
- feature agglomeration with Ward hierarchical clustering
Both methods are compared in a regression problem using a BayesianRidge as supervised estimator.
Out:
________________________________________________________________________________ [Memory] Calling sklearn.cluster._agglomerative.ward_tree... ward_tree(array([[-0.451933, ..., -0.675318], ..., [ 0.275706, ..., -1.085711]]), connectivity=<1600x1600 sparse matrix of type '<class 'numpy.int64'>' with 7840 stored elements in COOrdinate format>, n_clusters=None, return_distance=False) ________________________________________________________ward_tree - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling sklearn.cluster._agglomerative.ward_tree... ward_tree(array([[ 0.905206, ..., 0.161245], ..., [-0.849835, ..., -1.091621]]), connectivity=<1600x1600 sparse matrix of type '<class 'numpy.int64'>' with 7840 stored elements in COOrdinate format>, n_clusters=None, return_distance=False) ________________________________________________________ward_tree - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling sklearn.cluster._agglomerative.ward_tree... ward_tree(array([[ 0.905206, ..., -0.675318], ..., [-0.849835, ..., -1.085711]]), connectivity=<1600x1600 sparse matrix of type '<class 'numpy.int64'>' with 7840 stored elements in COOrdinate format>, n_clusters=None, return_distance=False) ________________________________________________________ward_tree - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling sklearn.feature_selection._univariate_selection.f_regression... f_regression(array([[-0.451933, ..., 0.275706], ..., [-0.675318, ..., -1.085711]]), array([ 25.267703, ..., -25.026711])) _____________________________________________________f_regression - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling sklearn.feature_selection._univariate_selection.f_regression... f_regression(array([[ 0.905206, ..., -0.849835], ..., [ 0.161245, ..., -1.091621]]), array([ -27.447268, ..., -112.638768])) _____________________________________________________f_regression - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling sklearn.feature_selection._univariate_selection.f_regression... f_regression(array([[ 0.905206, ..., -0.849835], ..., [-0.675318, ..., -1.085711]]), array([-27.447268, ..., -25.026711])) _____________________________________________________f_regression - 0.0s, 0.0min
# Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from joblib import Memory from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold # ############################################################################# # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise # ############################################################################# # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(location=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1)) coef_selection_ = coef_.reshape(size, size) # ############################################################################# # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
Total running time of the script: ( 0 minutes 0.854 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection.html