sklearn.neighbors.RadiusNeighborsClassifier
-
class sklearn.neighbors.RadiusNeighborsClassifier(radius=1.0, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, n_jobs=None, **kwargs)
[source] -
Classifier implementing a vote among neighbors within a given radius
Read more in the User Guide.
- Parameters
-
-
radiusfloat, default=1.0
-
Range of parameter space to use by default for
radius_neighbors
queries. -
weights{‘uniform’, ‘distance’} or callable, default=’uniform’
-
weight function used in prediction. Possible values:
- ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.
- ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
- [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.
Uniform weights are used by default.
-
algorithm{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’
-
Algorithm used to compute the nearest neighbors:
- ‘ball_tree’ will use
BallTree
- ‘kd_tree’ will use
KDTree
- ‘brute’ will use a brute-force search.
- ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit
method.
Note: fitting on sparse input will override the setting of this parameter, using brute force.
- ‘ball_tree’ will use
-
leaf_sizeint, default=30
-
Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.
-
pint, default=2
-
Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
-
metricstr or callable, default=’minkowski’
-
the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of
DistanceMetric
for a list of available metrics. If metric is “precomputed”, X is assumed to be a distance matrix and must be square during fit. X may be a sparse graph, in which case only “nonzero” elements may be considered neighbors. -
outlier_label{manual label, ‘most_frequent’}, default=None
-
label for outlier samples (samples with no neighbors in given radius).
- manual label: str or int label (should be the same type as y) or list of manual labels if multi-output is used.
- ‘most_frequent’ : assign the most frequent label of y to outliers.
- None : when any outlier is detected, ValueError will be raised.
-
metric_paramsdict, default=None
-
Additional keyword arguments for the metric function.
-
n_jobsint, default=None
-
The number of parallel jobs to run for neighbors search.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
-
- Attributes
-
-
classes_ndarray of shape (n_classes,)
-
Class labels known to the classifier.
-
effective_metric_str or callable
-
The distance metric used. It will be same as the
metric
parameter or a synonym of it, e.g. ‘euclidean’ if themetric
parameter set to ‘minkowski’ andp
parameter set to 2. -
effective_metric_params_dict
-
Additional keyword arguments for the metric function. For most metrics will be same with
metric_params
parameter, but may also contain thep
parameter value if theeffective_metric_
attribute is set to ‘minkowski’. -
n_samples_fit_int
-
Number of samples in the fitted data.
-
outlier_label_int or array-like of shape (n_class,)
-
Label which is given for outlier samples (samples with no neighbors on given radius).
-
outputs_2d_bool
-
False when
y
’s shape is (n_samples, ) or (n_samples, 1) during fit otherwise True.
-
Notes
See Nearest Neighbors in the online documentation for a discussion of the choice of
algorithm
andleaf_size
.https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
Examples
>>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsClassifier >>> neigh = RadiusNeighborsClassifier(radius=1.0) >>> neigh.fit(X, y) RadiusNeighborsClassifier(...) >>> print(neigh.predict([[1.5]])) [0] >>> print(neigh.predict_proba([[1.0]])) [[0.66666667 0.33333333]]
Methods
fit
(X, y)Fit the radius neighbors classifier from the training dataset.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict the class labels for the provided data.
Return probability estimates for the test data X.
radius_neighbors
([X, radius, …])Finds the neighbors within a given radius of a point or points.
radius_neighbors_graph
([X, radius, mode, …])Computes the (weighted) graph of Neighbors for points in X
score
(X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y)
[source] -
Fit the radius neighbors classifier from the training dataset.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples) if metric=’precomputed’
-
Training data.
-
y{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)
-
Target values.
-
- Returns
-
-
selfRadiusNeighborsClassifier
-
The fitted radius neighbors classifier.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
predict(X)
[source] -
Predict the class labels for the provided data.
- Parameters
-
-
Xarray-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘precomputed’
-
Test samples.
-
- Returns
-
-
yndarray of shape (n_queries,) or (n_queries, n_outputs)
-
Class labels for each data sample.
-
-
predict_proba(X)
[source] -
Return probability estimates for the test data X.
- Parameters
-
-
Xarray-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘precomputed’
-
Test samples.
-
- Returns
-
-
pndarray of shape (n_queries, n_classes), or a list of n_outputs
-
of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by lexicographic order.
-
-
radius_neighbors(X=None, radius=None, return_distance=True, sort_results=False)
[source] -
Finds the neighbors within a given radius of a point or points.
Return the indices and distances of each point from the dataset lying in a ball with size
radius
around the points of the query array. Points lying on the boundary are included in the results.The result points are not necessarily sorted by distance to their query point.
- Parameters
-
-
Xarray-like of (n_samples, n_features), default=None
-
The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor.
-
radiusfloat, default=None
-
Limiting distance of neighbors to return. The default is the value passed to the constructor.
-
return_distancebool, default=True
-
Whether or not to return the distances.
-
sort_resultsbool, default=False
-
If True, the distances and indices will be sorted by increasing distances before being returned. If False, the results may not be sorted. If
return_distance=False
, settingsort_results=True
will result in an error.New in version 0.22.
-
- Returns
-
-
neigh_distndarray of shape (n_samples,) of arrays
-
Array representing the distances to each point, only present if
return_distance=True
. The distance values are computed according to themetric
constructor parameter. -
neigh_indndarray of shape (n_samples,) of arrays
-
An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size
radius
around the query points.
-
Notes
Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency,
radius_neighbors
returns arrays of objects, where each object is a 1D array of indices or distances.Examples
In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who’s the closest point to [1, 1, 1]:
>>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) NearestNeighbors(radius=1.6) >>> rng = neigh.radius_neighbors([[1., 1., 1.]]) >>> print(np.asarray(rng[0][0])) [1.5 0.5] >>> print(np.asarray(rng[1][0])) [1 2]
The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time.
-
radius_neighbors_graph(X=None, radius=None, mode='connectivity', sort_results=False)
[source] -
Computes the (weighted) graph of Neighbors for points in X
Neighborhoods are restricted the points at a distance lower than radius.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features), default=None
-
The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor.
-
radiusfloat, default=None
-
Radius of neighborhoods. The default is the value passed to the constructor.
-
mode{‘connectivity’, ‘distance’}, default=’connectivity’
-
Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean distance between points.
-
sort_resultsbool, default=False
-
If True, in each row of the result, the non-zero entries will be sorted by increasing distances. If False, the non-zero entries may not be sorted. Only used with mode=’distance’.
New in version 0.22.
-
- Returns
-
-
Asparse-matrix of shape (n_queries, n_samples_fit)
-
n_samples_fit
is the number of samples in the fitted dataA[i, j]
is assigned the weight of edge that connectsi
toj
. The matrix if of format CSR.
-
See also
Examples
>>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) NearestNeighbors(radius=1.5) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[1., 0., 1.], [0., 1., 0.], [1., 0., 1.]])
-
score(X, y, sample_weight=None)
[source] -
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Test samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
True labels for
X
. -
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
scorefloat
-
Mean accuracy of
self.predict(X)
wrt.y
.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html