sklearn.linear_model.LassoLarsIC
-
class sklearn.linear_model.LassoLarsIC(criterion='aic', *, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False)[source] -
Lasso model fit with Lars using BIC or AIC for model selection
The optimization objective for Lasso is:
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple.
Read more in the User Guide.
- Parameters
-
-
criterion{‘bic’ , ‘aic’}, default=’aic’ -
The type of criterion to use.
-
fit_interceptbool, default=True -
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
-
verbosebool or int, default=False -
Sets the verbosity amount.
-
normalizebool, default=True -
This parameter is ignored when
fit_interceptis set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please useStandardScalerbefore callingfiton an estimator withnormalize=False. -
precomputebool, ‘auto’ or array-like, default=’auto’ -
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'let us decide. The Gram matrix can also be passed as argument. -
max_iterint, default=500 -
Maximum number of iterations to perform. Can be used for early stopping.
-
epsfloat, default=np.finfo(float).eps -
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the
tolparameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. -
copy_Xbool, default=True -
If True, X will be copied; else, it may be overwritten.
-
positivebool, default=False -
Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (
alphas_[alphas_ > 0.].min()when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached.
-
- Attributes
-
-
coef_array-like of shape (n_features,) -
parameter vector (w in the formulation formula)
-
intercept_float -
independent term in decision function.
-
alpha_float -
the alpha parameter chosen by the information criterion
-
alphas_array-like of shape (n_alphas + 1,) or list of such arrays -
Maximum of covariances (in absolute value) at each iteration.
n_alphasis eithermax_iter,n_featuresor the number of nodes in the path withalpha >= alpha_min, whichever is smaller. If a list, it will be of lengthn_targets. -
n_iter_int -
number of iterations run by lars_path to find the grid of alphas.
-
criterion_array-like of shape (n_alphas,) -
The value of the information criteria (‘aic’, ‘bic’) across all alphas. The alpha which has the smallest information criterion is chosen. This value is larger by a factor of
n_samplescompared to Eqns. 2.15 and 2.16 in (Zou et al, 2007).
-
See also
-
lars_path, LassoLars,LassoLarsCV
Notes
The estimation of the number of degrees of freedom is given by:
“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192.
https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_information_criterion
Examples
>>> from sklearn import linear_model >>> reg = linear_model.LassoLarsIC(criterion='bic') >>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) LassoLarsIC(criterion='bic') >>> print(reg.coef_) [ 0. -1.11...]
Methods
fit(X, y[, copy_X])Fit the model using X, y as training data.
get_params([deep])Get parameters for this estimator.
predict(X)Predict using the linear model.
score(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction.
set_params(**params)Set the parameters of this estimator.
-
fit(X, y, copy_X=None)[source] -
Fit the model using X, y as training data.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
training data.
-
yarray-like of shape (n_samples,) -
target values. Will be cast to X’s dtype if necessary
-
copy_Xbool, default=None -
If provided, this parameter will override the choice of copy_X made at instance creation. If
True, X will be copied; else, it may be overwritten.
-
- Returns
-
-
selfobject -
returns an instance of self.
-
-
get_params(deep=True)[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True -
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict -
Parameter names mapped to their values.
-
-
predict(X)[source] -
Predict using the linear model.
- Parameters
-
-
Xarray-like or sparse matrix, shape (n_samples, n_features) -
Samples.
-
- Returns
-
-
Carray, shape (n_samples,) -
Returns predicted values.
-
-
score(X, y, sample_weight=None)[source] -
Return the coefficient of determination \(R^2\) of the prediction.
The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred) ** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator. -
yarray-like of shape (n_samples,) or (n_samples, n_outputs) -
True values for
X. -
sample_weightarray-like of shape (n_samples,), default=None -
Sample weights.
-
- Returns
-
-
scorefloat -
\(R^2\) of
self.predict(X)wrt.y.
-
Notes
The \(R^2\) score used when calling
scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
-
set_params(**params)[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict -
Estimator parameters.
-
- Returns
-
-
selfestimator instance -
Estimator instance.
-
Examples using sklearn.linear_model.LassoLarsIC
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.LassoLarsIC.html