sklearn.metrics.precision_recall_fscore_support
-
sklearn.metrics.precision_recall_fscore_support(y_true, y_pred, *, beta=1.0, labels=None, pos_label=1, average=None, warn_for='precision', 'recall', 'f-score', sample_weight=None, zero_division='warn')
[source] -
Compute precision, recall, F-measure and support for each class.
The precision is the ratio
tp / (tp + fp)
wheretp
is the number of true positives andfp
the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.The recall is the ratio
tp / (tp + fn)
wheretp
is the number of true positives andfn
the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0.
The F-beta score weights recall more than precision by a factor of
beta
.beta == 1.0
means recall and precision are equally important.The support is the number of occurrences of each class in
y_true
.If
pos_label is None
and in binary classification, this function returns the average precision, recall and F-measure ifaverage
is one of'micro'
,'macro'
,'weighted'
or'samples'
.Read more in the User Guide.
- Parameters
-
-
y_true1d array-like, or label indicator array / sparse matrix
-
Ground truth (correct) target values.
-
y_pred1d array-like, or label indicator array / sparse matrix
-
Estimated targets as returned by a classifier.
-
betafloat, default=1.0
-
The strength of recall versus precision in the F-score.
-
labelsarray-like, default=None
-
The set of labels to include when
average != 'binary'
, and their order ifaverage is None
. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels iny_true
andy_pred
are used in sorted order. -
pos_labelstr or int, default=1
-
The class to report if
average='binary'
and the data is binary. If the data are multiclass or multilabel, this will be ignored; settinglabels=[pos_label]
andaverage != 'binary'
will report scores for that label only. -
average{‘binary’, ‘micro’, ‘macro’, ‘samples’,’weighted’}, default=None
-
If
None
, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:-
'binary':
-
Only report results for the class specified by
pos_label
. This is applicable only if targets (y_{true,pred}
) are binary. -
'micro':
-
Calculate metrics globally by counting the total true positives, false negatives and false positives.
-
'macro':
-
Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
-
'weighted':
-
Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall.
-
'samples':
-
Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from
accuracy_score
).
-
-
warn_fortuple or set, for internal use
-
This determines which warnings will be made in the case that this function is being used to return only one of its metrics.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
zero_division“warn”, 0 or 1, default=”warn”
-
- Sets the value to return when there is a zero division:
-
- recall: when there are no positive labels
- precision: when there are no positive predictions
- f-score: both
If set to “warn”, this acts as 0, but warnings are also raised.
-
- Returns
-
-
precisionfloat (if average is not None) or array of float, shape = [n_unique_labels]
-
recallfloat (if average is not None) or array of float, , shape = [n_unique_labels]
-
fbeta_scorefloat (if average is not None) or array of float, shape = [n_unique_labels]
-
supportNone (if average is not None) or array of int, shape = [n_unique_labels]
-
The number of occurrences of each label in
y_true
.
-
Notes
When
true positive + false positive == 0
, precision is undefined. Whentrue positive + false negative == 0
, recall is undefined. In such cases, by default the metric will be set to 0, as will f-score, andUndefinedMetricWarning
will be raised. This behavior can be modified withzero_division
.References
-
1
-
2
-
3
Examples
>>> import numpy as np >>> from sklearn.metrics import precision_recall_fscore_support >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') (0.22..., 0.33..., 0.26..., None)
It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging:
>>> precision_recall_fscore_support(y_true, y_pred, average=None, ... labels=['pig', 'dog', 'cat']) (array([0. , 0. , 0.66...]), array([0., 0., 1.]), array([0. , 0. , 0.8]), array([2, 2, 2]))
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.precision_recall_fscore_support.html