Balance model complexity and cross-validated score
This example balances model complexity and cross-validated score by finding a decent accuracy within 1 standard deviation of the best accuracy score while minimising the number of PCA components [1].
The figure shows the trade-off between cross-validated score and the number of PCA components. The balanced case is when n_components=10 and accuracy=0.88, which falls into the range within 1 standard deviation of the best accuracy score.
[1] Hastie, T., Tibshirani, R.,, Friedman, J. (2001). Model Assessment and Selection. The Elements of Statistical Learning (pp. 219-260). New York, NY, USA: Springer New York Inc..
Out:
The best_index_ is 2 The n_components selected is 10 The corresponding accuracy score is 0.88
# Author: Wenhao Zhang <[email protected]> print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC def lower_bound(cv_results): """ Calculate the lower bound within 1 standard deviation of the best `mean_test_scores`. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV` Returns ------- float Lower bound within 1 standard deviation of the best `mean_test_score`. """ best_score_idx = np.argmax(cv_results['mean_test_score']) return (cv_results['mean_test_score'][best_score_idx] - cv_results['std_test_score'][best_score_idx]) def best_low_complexity(cv_results): """ Balance model complexity with cross-validated score. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV`. Return ------ int Index of a model that has the fewest PCA components while has its test score within 1 standard deviation of the best `mean_test_score`. """ threshold = lower_bound(cv_results) candidate_idx = np.flatnonzero(cv_results['mean_test_score'] >= threshold) best_idx = candidate_idx[cv_results['param_reduce_dim__n_components'] [candidate_idx].argmin()] return best_idx pipe = Pipeline([ ('reduce_dim', PCA(random_state=42)), ('classify', LinearSVC(random_state=42, C=0.01)), ]) param_grid = { 'reduce_dim__n_components': [6, 8, 10, 12, 14] } grid = GridSearchCV(pipe, cv=10, n_jobs=1, param_grid=param_grid, scoring='accuracy', refit=best_low_complexity) X, y = load_digits(return_X_y=True) grid.fit(X, y) n_components = grid.cv_results_['param_reduce_dim__n_components'] test_scores = grid.cv_results_['mean_test_score'] plt.figure() plt.bar(n_components, test_scores, width=1.3, color='b') lower = lower_bound(grid.cv_results_) plt.axhline(np.max(test_scores), linestyle='--', color='y', label='Best score') plt.axhline(lower, linestyle='--', color='.5', label='Best score - 1 std') plt.title("Balance model complexity and cross-validated score") plt.xlabel('Number of PCA components used') plt.ylabel('Digit classification accuracy') plt.xticks(n_components.tolist()) plt.ylim((0, 1.0)) plt.legend(loc='upper left') best_index_ = grid.best_index_ print("The best_index_ is %d" % best_index_) print("The n_components selected is %d" % n_components[best_index_]) print("The corresponding accuracy score is %.2f" % grid.cv_results_['mean_test_score'][best_index_]) plt.show()
Total running time of the script: ( 0 minutes 6.336 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/model_selection/plot_grid_search_refit_callable.html