sklearn.utils.shuffle
-
sklearn.utils.shuffle(*arrays, random_state=None, n_samples=None)
[source] -
Shuffle arrays or sparse matrices in a consistent way.
This is a convenience alias to
resample(*arrays, replace=False)
to do random permutations of the collections.- Parameters
-
-
*arrayssequence of indexable data-structures
-
Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension.
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for shuffling the data. Pass an int for reproducible results across multiple function calls. See Glossary.
-
n_samplesint, default=None
-
Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. It should not be larger than the length of arrays.
-
- Returns
-
-
shuffled_arrayssequence of indexable data-structures
-
Sequence of shuffled copies of the collections. The original arrays are not impacted.
-
See also
Examples
It is possible to mix sparse and dense arrays in the same run:
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[0., 0.], [2., 1.], [1., 0.]]) >>> X_sparse <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[0., 0.], [2., 1.], [1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1])
Examples using sklearn.utils.shuffle
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.utils.shuffle.html