sklearn.covariance.empirical_covariance
- 
sklearn.covariance.empirical_covariance(X, *, assume_centered=False)[source]
- 
Computes the Maximum likelihood covariance estimator - Parameters
- 
- 
Xndarray of shape (n_samples, n_features)
- 
Data from which to compute the covariance estimate 
- 
assume_centeredbool, default=False
- 
If True, data will not be centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data will be centered before computation. 
 
- 
- Returns
- 
- 
covariancendarray of shape (n_features, n_features)
- 
Empirical covariance (Maximum Likelihood Estimator). 
 
- 
 Examples>>> from sklearn.covariance import empirical_covariance >>> X = [[1,1,1],[1,1,1],[1,1,1], ... [0,0,0],[0,0,0],[0,0,0]] >>> empirical_covariance(X) array([[0.25, 0.25, 0.25], [0.25, 0.25, 0.25], [0.25, 0.25, 0.25]])
Examples using sklearn.covariance.empirical_covariance
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.covariance.empirical_covariance.html