sklearn.preprocessing.MinMaxScaler
-
class sklearn.preprocessing.MinMaxScaler(feature_range=0, 1, *, copy=True, clip=False)
[source] -
Transform features by scaling each feature to a given range.
This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.
The transformation is given by:
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min
where min, max = feature_range.
This transformation is often used as an alternative to zero mean, unit variance scaling.
Read more in the User Guide.
- Parameters
-
-
feature_rangetuple (min, max), default=(0, 1)
-
Desired range of transformed data.
-
copybool, default=True
-
Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array).
- clip: bool, default=False
-
Set to True to clip transformed values of held-out data to provided
feature range
.New in version 0.24.
-
- Attributes
-
-
min_ndarray of shape (n_features,)
-
Per feature adjustment for minimum. Equivalent to
min - X.min(axis=0) * self.scale_
-
scale_ndarray of shape (n_features,)
-
Per feature relative scaling of the data. Equivalent to
(max - min) / (X.max(axis=0) - X.min(axis=0))
New in version 0.17: scale_ attribute.
-
data_min_ndarray of shape (n_features,)
-
Per feature minimum seen in the data
New in version 0.17: data_min_
-
data_max_ndarray of shape (n_features,)
-
Per feature maximum seen in the data
New in version 0.17: data_max_
-
data_range_ndarray of shape (n_features,)
-
Per feature range
(data_max_ - data_min_)
seen in the dataNew in version 0.17: data_range_
-
n_samples_seen_int
-
The number of samples processed by the estimator. It will be reset on new calls to fit, but increments across
partial_fit
calls.
-
See also
-
minmax_scale
-
Equivalent function without the estimator API.
Notes
NaNs are treated as missing values: disregarded in fit, and maintained in transform.
For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.
Examples
>>> from sklearn.preprocessing import MinMaxScaler >>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]] >>> scaler = MinMaxScaler() >>> print(scaler.fit(data)) MinMaxScaler() >>> print(scaler.data_max_) [ 1. 18.] >>> print(scaler.transform(data)) [[0. 0. ] [0.25 0.25] [0.5 0.5 ] [1. 1. ]] >>> print(scaler.transform([[2, 2]])) [[1.5 0. ]]
Methods
fit
(X[, y])Compute the minimum and maximum to be used for later scaling.
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
Undo the scaling of X according to feature_range.
partial_fit
(X[, y])Online computation of min and max on X for later scaling.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Scale features of X according to feature_range.
-
fit(X, y=None)
[source] -
Compute the minimum and maximum to be used for later scaling.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
The data used to compute the per-feature minimum and maximum used for later scaling along the features axis.
-
yNone
-
Ignored.
-
- Returns
-
-
selfobject
-
Fitted scaler.
-
-
fit_transform(X, y=None, **fit_params)
[source] -
Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
-
Target values (None for unsupervised transformations).
-
**fit_paramsdict
-
Additional fit parameters.
-
- Returns
-
-
X_newndarray array of shape (n_samples, n_features_new)
-
Transformed array.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
inverse_transform(X)
[source] -
Undo the scaling of X according to feature_range.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input data that will be transformed. It cannot be sparse.
-
- Returns
-
-
Xtndarray of shape (n_samples, n_features)
-
Transformed data.
-
-
partial_fit(X, y=None)
[source] -
Online computation of min and max on X for later scaling.
All of X is processed as a single batch. This is intended for cases when
fit
is not feasible due to very large number ofn_samples
or because X is read from a continuous stream.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
The data used to compute the mean and standard deviation used for later scaling along the features axis.
-
yNone
-
Ignored.
-
- Returns
-
-
selfobject
-
Fitted scaler.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
-
transform(X)
[source] -
Scale features of X according to feature_range.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input data that will be transformed.
-
- Returns
-
-
Xtndarray of shape (n_samples, n_features)
-
Transformed data.
-
Examples using sklearn.preprocessing.MinMaxScaler
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.preprocessing.MinMaxScaler.html