Plotting Cross-Validated Predictions
This example shows how to use cross_val_predict
to visualize prediction errors.
from sklearn import datasets from sklearn.model_selection import cross_val_predict from sklearn import linear_model import matplotlib.pyplot as plt lr = linear_model.LinearRegression() X, y = datasets.load_diabetes(return_X_y=True) # cross_val_predict returns an array of the same size as `y` where each entry # is a prediction obtained by cross validation: predicted = cross_val_predict(lr, X, y, cv=10) fig, ax = plt.subplots() ax.scatter(y, predicted, edgecolors=(0, 0, 0)) ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') plt.show()
Total running time of the script: ( 0 minutes 0.149 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/model_selection/plot_cv_predict.html