sklearn.metrics.mean_poisson_deviance
-
sklearn.metrics.mean_poisson_deviance(y_true, y_pred, *, sample_weight=None)
[source] -
Mean Poisson deviance regression loss.
Poisson deviance is equivalent to the Tweedie deviance with the power parameter
power=1
.Read more in the User Guide.
- Parameters
-
-
y_truearray-like of shape (n_samples,)
-
Ground truth (correct) target values. Requires y_true >= 0.
-
y_predarray-like of shape (n_samples,)
-
Estimated target values. Requires y_pred > 0.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
lossfloat
-
A non-negative floating point value (the best value is 0.0).
-
Examples
>>> from sklearn.metrics import mean_poisson_deviance >>> y_true = [2, 0, 1, 4] >>> y_pred = [0.5, 0.5, 2., 2.] >>> mean_poisson_deviance(y_true, y_pred) 1.4260...
Examples using sklearn.metrics.mean_poisson_deviance
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.mean_poisson_deviance.html