sklearn.multioutput.MultiOutputClassifier
- 
class sklearn.multioutput.MultiOutputClassifier(estimator, *, n_jobs=None)[source]
- 
Multi target classification This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that do not natively support multi-target classification - Parameters
- 
- 
estimatorestimator object
- 
An estimator object implementing fit, score and predict_proba. 
- 
n_jobsint or None, optional (default=None)
- 
The number of jobs to run in parallel. fit,predictandpartial_fit(if supported by the passed estimator) will be parallelized for each target.When individual estimators are fast to train or predict, using n_jobs > 1can result in slower performance due to the parallelism overhead.Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all available processes / threads. See Glossary for more details.Changed in version 0.20: n_jobsdefault changed from 1 to None
 
- 
- Attributes
- 
- 
classes_ndarray of shape (n_classes,)
- 
Class labels. 
- 
estimators_list of n_output estimators
- 
Estimators used for predictions. 
 
- 
 Examples>>> import numpy as np >>> from sklearn.datasets import make_multilabel_classification >>> from sklearn.multioutput import MultiOutputClassifier >>> from sklearn.neighbors import KNeighborsClassifier >>> X, y = make_multilabel_classification(n_classes=3, random_state=0) >>> clf = MultiOutputClassifier(KNeighborsClassifier()).fit(X, y) >>> clf.predict(X[-2:]) array([[1, 1, 0], [1, 1, 1]]) Methodsfit(X, Y[, sample_weight])Fit the model to data matrix X and targets Y. get_params([deep])Get parameters for this estimator. partial_fit(X, y[, classes, sample_weight])Incrementally fit the model to data. predict(X)Predict multi-output variable using a model score(X, y)Returns the mean accuracy on the given test data and labels. set_params(**params)Set the parameters of this estimator. - 
fit(X, Y, sample_weight=None, **fit_params)[source]
- 
Fit the model to data matrix X and targets Y. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
The input data. 
- 
Yarray-like of shape (n_samples, n_classes)
- 
The target values. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. If None, then samples are equally weighted. Only supported if the underlying classifier supports sample weights. 
- 
**fit_paramsdict of string -> object
- 
Parameters passed to the estimator.fitmethod of each step.New in version 0.23. 
 
- 
- Returns
- 
- 
selfobject
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
partial_fit(X, y, classes=None, sample_weight=None)[source]
- 
Incrementally fit the model to data. Fit a separate model for each output variable. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Data. 
- 
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- 
Multi-output targets. 
- 
classeslist of ndarray of shape (n_outputs,)
- 
Each array is unique classes for one output in str/int Can be obtained by via [np.unique(y[:, i]) for i in range(y.shape[1])], where y is the target matrix of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to contain all labels inclasses.
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights. 
 
- 
- Returns
- 
- 
selfobject
 
- 
 
 - 
predict(X)[source]
- 
- Predict multi-output variable using a model
- 
trained for each target variable. 
 - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Data. 
 
- 
- Returns
- 
- 
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- 
Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor. 
 
- 
 
 - 
property predict_proba
- 
Probability estimates. Returns prediction probabilities for each class of each output. This method will raise a ValueErrorif any of the estimators do not havepredict_proba.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Data 
 
- 
- Returns
- 
- 
parray of shape (n_samples, n_classes), or a list of n_outputs such arrays if n_outputs > 1.
- 
The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_. Changed in version 0.19: This function now returns a list of arrays where the length of the list is n_outputs, and each array is (n_samples,n_classes) for that particular output.
 
- 
 
 - 
score(X, y)[source]
- 
Returns the mean accuracy on the given test data and labels. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Test samples 
- 
yarray-like of shape (n_samples, n_outputs)
- 
True values for X 
 
- 
- Returns
- 
- 
scoresfloat
- 
accuracy_score of self.predict(X) versus y 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.multioutput.MultiOutputClassifier.html