sklearn.preprocessing.KernelCenterer
-
class sklearn.preprocessing.KernelCenterer
[source] -
Center a kernel matrix.
Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).
Read more in the User Guide.
- Attributes
-
-
K_fit_rows_array of shape (n_samples,)
-
Average of each column of kernel matrix.
-
K_fit_all_float
-
Average of kernel matrix.
-
Examples
>>> from sklearn.preprocessing import KernelCenterer >>> from sklearn.metrics.pairwise import pairwise_kernels >>> X = [[ 1., -2., 2.], ... [ -2., 1., 3.], ... [ 4., 1., -2.]] >>> K = pairwise_kernels(X, metric='linear') >>> K array([[ 9., 2., -2.], [ 2., 14., -13.], [ -2., -13., 21.]]) >>> transformer = KernelCenterer().fit(K) >>> transformer KernelCenterer() >>> transformer.transform(K) array([[ 5., 0., -5.], [ 0., 14., -14.], [ -5., -14., 19.]])
Methods
fit
(K[, y])Fit KernelCenterer
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
transform
(K[, copy])Center kernel matrix.
-
fit(K, y=None)
[source] -
Fit KernelCenterer
- Parameters
-
-
Kndarray of shape (n_samples, n_samples)
-
Kernel matrix.
-
yNone
-
Ignored.
-
- Returns
-
-
selfobject
-
Fitted transformer.
-
-
fit_transform(X, y=None, **fit_params)
[source] -
Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
-
Target values (None for unsupervised transformations).
-
**fit_paramsdict
-
Additional fit parameters.
-
- Returns
-
-
X_newndarray array of shape (n_samples, n_features_new)
-
Transformed array.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
-
transform(K, copy=True)
[source] -
Center kernel matrix.
- Parameters
-
-
Kndarray of shape (n_samples1, n_samples2)
-
Kernel matrix.
-
copybool, default=True
-
Set to False to perform inplace computation.
-
- Returns
-
-
K_newndarray of shape (n_samples1, n_samples2)
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.preprocessing.KernelCenterer.html