sklearn.metrics.plot_roc_curve
-
sklearn.metrics.plot_roc_curve(estimator, X, y, *, sample_weight=None, drop_intermediate=True, response_method='auto', name=None, ax=None, pos_label=None, **kwargs)
[source] -
Plot Receiver operating characteristic (ROC) curve.
Extra keyword arguments will be passed to matplotlib’s
plot
.Read more in the User Guide.
- Parameters
-
-
estimatorestimator instance
-
Fitted classifier or a fitted
Pipeline
in which the last estimator is a classifier. -
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Input values.
-
yarray-like of shape (n_samples,)
-
Target values.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
drop_intermediateboolean, default=True
-
Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves.
-
response_method{‘predict_proba’, ‘decision_function’, ‘auto’} default=’auto’
-
Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next.
-
namestr, default=None
-
Name of ROC Curve for labeling. If
None
, use the name of the estimator. -
axmatplotlib axes, default=None
-
Axes object to plot on. If
None
, a new figure and axes is created. -
pos_labelstr or int, default=None
-
The class considered as the positive class when computing the roc auc metrics. By default,
estimators.classes_[1]
is considered as the positive class.New in version 0.24.
-
- Returns
-
-
displayRocCurveDisplay
-
Object that stores computed values.
-
See also
-
roc_curve
-
Compute Receiver operating characteristic (ROC) curve.
-
RocCurveDisplay
-
ROC Curve visualization.
-
roc_auc_score
-
Compute the area under the ROC curve.
Examples
>>> import matplotlib.pyplot as plt >>> from sklearn import datasets, metrics, model_selection, svm >>> X, y = datasets.make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = model_selection.train_test_split( ... X, y, random_state=0) >>> clf = svm.SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> metrics.plot_roc_curve(clf, X_test, y_test) >>> plt.show()
Examples using sklearn.metrics.plot_roc_curve
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.plot_roc_curve.html