sklearn.feature_selection.GenericUnivariateSelect
-
class sklearn.feature_selection.GenericUnivariateSelect(score_func=<function f_classif>, *, mode='percentile', param=1e-05)
[source] -
Univariate feature selector with configurable strategy.
Read more in the User Guide.
- Parameters
-
-
score_funccallable, default=f_classif
-
Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). For modes ‘percentile’ or ‘kbest’ it can return a single array scores.
-
mode{‘percentile’, ‘k_best’, ‘fpr’, ‘fdr’, ‘fwe’}, default=’percentile’
-
Feature selection mode.
-
paramfloat or int depending on the feature selection mode, default=1e-5
-
Parameter of the corresponding mode.
-
- Attributes
-
-
scores_array-like of shape (n_features,)
-
Scores of features.
-
pvalues_array-like of shape (n_features,)
-
p-values of feature scores, None if
score_func
returned scores only.
-
See also
-
f_classif
-
ANOVA F-value between label/feature for classification tasks.
-
mutual_info_classif
-
Mutual information for a discrete target.
-
chi2
-
Chi-squared stats of non-negative features for classification tasks.
-
f_regression
-
F-value between label/feature for regression tasks.
-
mutual_info_regression
-
Mutual information for a continuous target.
-
SelectPercentile
-
Select features based on percentile of the highest scores.
-
SelectKBest
-
Select features based on the k highest scores.
-
SelectFpr
-
Select features based on a false positive rate test.
-
SelectFdr
-
Select features based on an estimated false discovery rate.
-
SelectFwe
-
Select features based on family-wise error rate.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.feature_selection import GenericUnivariateSelect, chi2 >>> X, y = load_breast_cancer(return_X_y=True) >>> X.shape (569, 30) >>> transformer = GenericUnivariateSelect(chi2, mode='k_best', param=20) >>> X_new = transformer.fit_transform(X, y) >>> X_new.shape (569, 20)
Methods
fit
(X, y)Run score function on (X, y) and get the appropriate features.
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
get_support
([indices])Get a mask, or integer index, of the features selected
Reverse the transformation operation
set_params
(**params)Set the parameters of this estimator.
transform
(X)Reduce X to the selected features.
-
fit(X, y)
[source] -
Run score function on (X, y) and get the appropriate features.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
The training input samples.
-
yarray-like of shape (n_samples,)
-
The target values (class labels in classification, real numbers in regression).
-
- Returns
-
-
selfobject
-
-
fit_transform(X, y=None, **fit_params)
[source] -
Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
-
Target values (None for unsupervised transformations).
-
**fit_paramsdict
-
Additional fit parameters.
-
- Returns
-
-
X_newndarray array of shape (n_samples, n_features_new)
-
Transformed array.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
get_support(indices=False)
[source] -
Get a mask, or integer index, of the features selected
- Parameters
-
-
indicesbool, default=False
-
If True, the return value will be an array of integers, rather than a boolean mask.
-
- Returns
-
-
supportarray
-
An index that selects the retained features from a feature vector. If
indices
is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. Ifindices
is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector.
-
-
inverse_transform(X)
[source] -
Reverse the transformation operation
- Parameters
-
-
Xarray of shape [n_samples, n_selected_features]
-
The input samples.
-
- Returns
-
-
X_rarray of shape [n_samples, n_original_features]
-
X
with columns of zeros inserted where features would have been removed bytransform
.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
-
transform(X)
[source] -
Reduce X to the selected features.
- Parameters
-
-
Xarray of shape [n_samples, n_features]
-
The input samples.
-
- Returns
-
-
X_rarray of shape [n_samples, n_selected_features]
-
The input samples with only the selected features.
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html