Faces recognition example using eigenfaces and SVMs
The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW:
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)
Expected results for the top 5 most represented people in the dataset:
Ariel Sharon | 0.67 | 0.92 | 0.77 | 13 |
Colin Powell | 0.75 | 0.78 | 0.76 | 60 |
Donald Rumsfeld | 0.78 | 0.67 | 0.72 | 27 |
George W Bush | 0.86 | 0.86 | 0.86 | 146 |
Gerhard Schroeder | 0.76 | 0.76 | 0.76 | 25 |
Hugo Chavez | 0.67 | 0.67 | 0.67 | 15 |
Tony Blair | 0.81 | 0.69 | 0.75 | 36 |
avg / total | 0.80 | 0.80 | 0.80 | 322 |
Out:
Total dataset size: n_samples: 1288 n_features: 1850 n_classes: 7 Extracting the top 150 eigenfaces from 966 faces done in 0.129s Projecting the input data on the eigenfaces orthonormal basis done in 0.010s Fitting the classifier to the training set done in 28.494s Best estimator found by grid search: SVC(C=1000.0, class_weight='balanced', gamma=0.005) Predicting people's names on the test set done in 0.090s precision recall f1-score support Ariel Sharon 0.75 0.46 0.57 13 Colin Powell 0.81 0.87 0.84 60 Donald Rumsfeld 0.86 0.67 0.75 27 George W Bush 0.85 0.98 0.91 146 Gerhard Schroeder 0.95 0.80 0.87 25 Hugo Chavez 1.00 0.60 0.75 15 Tony Blair 0.97 0.81 0.88 36 accuracy 0.86 322 macro avg 0.88 0.74 0.80 322 weighted avg 0.87 0.86 0.85 322 [[ 6 2 0 5 0 0 0] [ 1 52 1 6 0 0 0] [ 1 2 18 6 0 0 0] [ 0 3 0 143 0 0 0] [ 0 1 0 3 20 0 1] [ 0 3 0 2 1 9 0] [ 0 1 2 4 0 0 29]]
from time import time import logging import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.datasets import fetch_lfw_people from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import PCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') # ############################################################################# # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) # ############################################################################# # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42) # ############################################################################# # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) # ############################################################################# # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV( SVC(kernel='rbf', class_weight='balanced'), param_grid ) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) # ############################################################################# # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) # ############################################################################# # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
Total running time of the script: ( 0 minutes 29.621 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/applications/plot_face_recognition.html