Gaussian processes on discrete data structures
This example illustrates the use of Gaussian processes for regression and classification tasks on data that are not in fixed-length feature vector form. This is achieved through the use of kernel functions that operates directly on discrete structures such as variable-length sequences, trees, and graphs.
Specifically, here the input variables are some gene sequences stored as variable-length strings consisting of letters ‘A’, ‘T’, ‘C’, and ‘G’, while the output variables are floating point numbers and True/False labels in the regression and classification tasks, respectively.
A kernel between the gene sequences is defined using R-convolution 1 by integrating a binary letter-wise kernel over all pairs of letters among a pair of strings.
This example will generate three figures.
In the first figure, we visualize the value of the kernel, i.e. the similarity of the sequences, using a colormap. Brighter color here indicates higher similarity.
In the second figure, we show some regression result on a dataset of 6 sequences. Here we use the 1st, 2nd, 4th, and 5th sequences as the training set to make predictions on the 3rd and 6th sequences.
In the third figure, we demonstrate a classification model by training on 6 sequences and make predictions on another 5 sequences. The ground truth here is simply whether there is at least one ‘A’ in the sequence. Here the model makes four correct classifications and fails on one.
-
1
-
Haussler, D. (1999). Convolution kernels on discrete structures (Vol. 646). Technical report, Department of Computer Science, University of California at Santa Cruz.
Out:
/home/circleci/project/sklearn/gaussian_process/kernels.py:402: ConvergenceWarning: The optimal value found for dimension 0 of parameter baseline_similarity is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value. warnings.warn("The optimal value found for "
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process.kernels import Kernel, Hyperparameter from sklearn.gaussian_process.kernels import GenericKernelMixin from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.base import clone class SequenceKernel(GenericKernelMixin, Kernel): ''' A minimal (but valid) convolutional kernel for sequences of variable lengths.''' def __init__(self, baseline_similarity=0.5, baseline_similarity_bounds=(1e-5, 1)): self.baseline_similarity = baseline_similarity self.baseline_similarity_bounds = baseline_similarity_bounds @property def hyperparameter_baseline_similarity(self): return Hyperparameter("baseline_similarity", "numeric", self.baseline_similarity_bounds) def _f(self, s1, s2): ''' kernel value between a pair of sequences ''' return sum([1.0 if c1 == c2 else self.baseline_similarity for c1 in s1 for c2 in s2]) def _g(self, s1, s2): ''' kernel derivative between a pair of sequences ''' return sum([0.0 if c1 == c2 else 1.0 for c1 in s1 for c2 in s2]) def __call__(self, X, Y=None, eval_gradient=False): if Y is None: Y = X if eval_gradient: return (np.array([[self._f(x, y) for y in Y] for x in X]), np.array([[[self._g(x, y)] for y in Y] for x in X])) else: return np.array([[self._f(x, y) for y in Y] for x in X]) def diag(self, X): return np.array([self._f(x, x) for x in X]) def is_stationary(self): return False def clone_with_theta(self, theta): cloned = clone(self) cloned.theta = theta return cloned kernel = SequenceKernel() ''' Sequence similarity matrix under the kernel =========================================== ''' X = np.array(['AGCT', 'AGC', 'AACT', 'TAA', 'AAA', 'GAACA']) K = kernel(X) D = kernel.diag(X) plt.figure(figsize=(8, 5)) plt.imshow(np.diag(D**-0.5).dot(K).dot(np.diag(D**-0.5))) plt.xticks(np.arange(len(X)), X) plt.yticks(np.arange(len(X)), X) plt.title('Sequence similarity under the kernel') ''' Regression ========== ''' X = np.array(['AGCT', 'AGC', 'AACT', 'TAA', 'AAA', 'GAACA']) Y = np.array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0]) training_idx = [0, 1, 3, 4] gp = GaussianProcessRegressor(kernel=kernel) gp.fit(X[training_idx], Y[training_idx]) plt.figure(figsize=(8, 5)) plt.bar(np.arange(len(X)), gp.predict(X), color='b', label='prediction') plt.bar(training_idx, Y[training_idx], width=0.2, color='r', alpha=1, label='training') plt.xticks(np.arange(len(X)), X) plt.title('Regression on sequences') plt.legend() ''' Classification ============== ''' X_train = np.array(['AGCT', 'CGA', 'TAAC', 'TCG', 'CTTT', 'TGCT']) # whether there are 'A's in the sequence Y_train = np.array([True, True, True, False, False, False]) gp = GaussianProcessClassifier(kernel) gp.fit(X_train, Y_train) X_test = ['AAA', 'ATAG', 'CTC', 'CT', 'C'] Y_test = [True, True, False, False, False] plt.figure(figsize=(8, 5)) plt.scatter(np.arange(len(X_train)), [1.0 if c else -1.0 for c in Y_train], s=100, marker='o', edgecolor='none', facecolor=(1, 0.75, 0), label='training') plt.scatter(len(X_train) + np.arange(len(X_test)), [1.0 if c else -1.0 for c in Y_test], s=100, marker='o', edgecolor='none', facecolor='r', label='truth') plt.scatter(len(X_train) + np.arange(len(X_test)), [1.0 if c else -1.0 for c in gp.predict(X_test)], s=100, marker='x', edgecolor=(0, 1.0, 0.3), linewidth=2, label='prediction') plt.xticks(np.arange(len(X_train) + len(X_test)), np.concatenate((X_train, X_test))) plt.yticks([-1, 1], [False, True]) plt.title('Classification on sequences') plt.legend() plt.show()
Total running time of the script: ( 0 minutes 0.446 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/gaussian_process/plot_gpr_on_structured_data.html