sklearn.dummy.DummyRegressor
-
class sklearn.dummy.DummyRegressor(*, strategy='mean', constant=None, quantile=None)
[source] -
DummyRegressor is a regressor that makes predictions using simple rules.
This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real problems.
Read more in the User Guide.
New in version 0.13.
- Parameters
-
-
strategy{“mean”, “median”, “quantile”, “constant”}, default=”mean”
-
Strategy to use to generate predictions.
- “mean”: always predicts the mean of the training set
- “median”: always predicts the median of the training set
- “quantile”: always predicts a specified quantile of the training set, provided with the quantile parameter.
- “constant”: always predicts a constant value that is provided by the user.
-
constantint or float or array-like of shape (n_outputs,), default=None
-
The explicit constant as predicted by the “constant” strategy. This parameter is useful only for the “constant” strategy.
-
quantilefloat in [0.0, 1.0], default=None
-
The quantile to predict using the “quantile” strategy. A quantile of 0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the maximum.
-
- Attributes
-
-
constant_ndarray of shape (1, n_outputs)
-
Mean or median or quantile of the training targets or constant value given by the user.
-
n_outputs_int
-
Number of outputs.
-
Examples
>>> import numpy as np >>> from sklearn.dummy import DummyRegressor >>> X = np.array([1.0, 2.0, 3.0, 4.0]) >>> y = np.array([2.0, 3.0, 5.0, 10.0]) >>> dummy_regr = DummyRegressor(strategy="mean") >>> dummy_regr.fit(X, y) DummyRegressor() >>> dummy_regr.predict(X) array([5., 5., 5., 5.]) >>> dummy_regr.score(X, y) 0.0
Methods
fit
(X, y[, sample_weight])Fit the random regressor.
get_params
([deep])Get parameters for this estimator.
predict
(X[, return_std])Perform classification on test vectors X.
score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y, sample_weight=None)
[source] -
Fit the random regressor.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Training data.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
Target values.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
selfobject
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
predict(X, return_std=False)
[source] -
Perform classification on test vectors X.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Test data.
-
return_stdbool, default=False
-
Whether to return the standard deviation of posterior prediction. All zeros in this case.
New in version 0.20.
-
- Returns
-
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
Predicted target values for X.
-
y_stdarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
Standard deviation of predictive distribution of query points.
-
-
score(X, y, sample_weight=None)
[source] -
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
- Parameters
-
-
XNone or array-like of shape (n_samples, n_features)
-
Test samples. Passing None as test samples gives the same result as passing real test samples, since DummyRegressor operates independently of the sampled observations.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
True values for X.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
scorefloat
-
R^2 of self.predict(X) wrt. y.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
Examples using sklearn.dummy.DummyRegressor
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.dummy.DummyRegressor.html