Model Complexity Influence
Demonstrate how model complexity influences both prediction accuracy and computational performance.
- We will be using two datasets:
-
- Diabetes dataset for regression. This dataset consists of 10 measurements taken from diabetes patients. The task is to predict disease progression;
- The 20 newsgroups text dataset for classification. This dataset consists of newsgroup posts. The task is to predict on which topic (out of 20 topics) the post is written about.
- We will model the complexity influence on three different estimators:
-
-
SGDClassifier
(for classification data) which implements stochastic gradient descent learning; -
NuSVR
(for regression data) which implements Nu support vector regression; -
GradientBoostingRegressor
(for regression data) which builds an additive model in a forward stage-wise fashion.
-
We make the model complexity vary through the choice of relevant model parameters in each of our selected models. Next, we will measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss).
print(__doc__) # Authors: Eustache Diemert <[email protected]> # Maria Telenczuk <https://github.com/maikia> # Guillaume Lemaitre <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm import NuSVR from sklearn.ensemble import GradientBoostingRegressor from sklearn.linear_model import SGDClassifier from sklearn.metrics import hamming_loss # Initialize random generator np.random.seed(0)
Load the data
First we load both datasets.
Note
We are using fetch_20newsgroups_vectorized
to download 20 newsgroups dataset. It returns ready-to-use features.
Note
X
of the 20 newsgroups dataset is a sparse matrix while X
of diabetes dataset is a numpy array.
def generate_data(case): """Generate regression/classification data.""" if case == 'regression': X, y = datasets.load_diabetes(return_X_y=True) elif case == 'classification': X, y = datasets.fetch_20newsgroups_vectorized(subset='all', return_X_y=True) X, y = shuffle(X, y) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data regression_data = generate_data('regression') classification_data = generate_data('classification')
Benchmark influence
Next, we can calculate the influence of the parameters on the given estimator. In each round, we will set the estimator with the new value of changing_param
and we will be collecting the prediction times, prediction performance and complexities to see how those changes affect the estimator. We will calculate the complexity using complexity_computer
passed as a parameter.
def benchmark_influence(conf): """ Benchmark influence of `changing_param` on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities
Choose parameters
We choose the parameters for each of our estimators by making a dictionary with all the necessary values. changing_param
is the name of the parameter which will vary in each estimator. Complexity will be defined by the complexity_label
and calculated using complexity_computer
. Also note that depending on the estimator type we are passing different data.
def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True, 'tol': 1e-3}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ]
Run the code and plot the results
We defined all the functions required to run our benchmark. Now, we will loop over the different configurations that we defined previously. Subsequently, we can analyze the plots obtained from the benchmark: Relaxing the L1
penalty in the SGD classifier reduces the prediction error but leads to an increase in the training time. We can draw a similar analysis regarding the training time which increases with the number of support vectors with a Nu-SVR. However, we observed that there is an optimal number of support vectors which reduces the prediction error. Indeed, too few support vectors lead to an under-fitted model while too many support vectors lead to an over-fitted model. The exact same conclusion can be drawn for the gradient-boosting model. The only the difference with the Nu-SVR is that having too many trees in the ensemble is not as detrimental.
def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ fig = plt.figure() fig.subplots_adjust(right=0.75) # first axes (prediction error) ax1 = fig.add_subplot(111) line1 = ax1.plot(complexities, mse_values, c='tab:blue', ls='-')[0] ax1.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] ax1.set_ylabel(y1_label) ax1.spines['left'].set_color(line1.get_color()) ax1.yaxis.label.set_color(line1.get_color()) ax1.tick_params(axis='y', colors=line1.get_color()) # second axes (latency) ax2 = fig.add_subplot(111, sharex=ax1, frameon=False) line2 = ax2.plot(complexities, prediction_times, c='tab:orange', ls='-')[0] ax2.yaxis.tick_right() ax2.yaxis.set_label_position("right") y2_label = "Time (s)" ax2.set_ylabel(y2_label) ax1.spines['right'].set_color(line2.get_color()) ax2.yaxis.label.set_color(line2.get_color()) ax2.tick_params(axis='y', colors=line2.get_color()) plt.legend((line1, line2), ("prediction error", "latency"), loc='upper right') plt.title("Influence of varying '%s' on %s" % (conf['changing_param'], conf['estimator'].__name__)) for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities) plt.show()
Out:
Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.25, loss='modified_huber', penalty='elasticnet') Complexity: 4482 | Hamming Loss (Misclassification Ratio): 0.2541 | Pred. Time: 0.023385s Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.5, loss='modified_huber', penalty='elasticnet') Complexity: 1668 | Hamming Loss (Misclassification Ratio): 0.2854 | Pred. Time: 0.020733s Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.75, loss='modified_huber', penalty='elasticnet') Complexity: 874 | Hamming Loss (Misclassification Ratio): 0.3143 | Pred. Time: 0.017929s Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.9, loss='modified_huber', penalty='elasticnet') Complexity: 663 | Hamming Loss (Misclassification Ratio): 0.3268 | Pred. Time: 0.015345s Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.1) Complexity: 36 | MSE: 7004.5333 | Pred. Time: 0.000333s Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.25) Complexity: 90 | MSE: 6918.2577 | Pred. Time: 0.001021s Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05) Complexity: 178 | MSE: 6840.2763 | Pred. Time: 0.001901s Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.75) Complexity: 266 | MSE: 6918.2492 | Pred. Time: 0.003144s Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.9) Complexity: 318 | MSE: 6940.2899 | Pred. Time: 0.003781s Benchmarking GradientBoostingRegressor(n_estimators=10) Complexity: 10 | MSE: 4062.4219 | Pred. Time: 0.000218s Benchmarking GradientBoostingRegressor(n_estimators=50) Complexity: 50 | MSE: 3156.4420 | Pred. Time: 0.000177s Benchmarking GradientBoostingRegressor() Complexity: 100 | MSE: 3301.5938 | Pred. Time: 0.000253s Benchmarking GradientBoostingRegressor(n_estimators=200) Complexity: 200 | MSE: 3235.9376 | Pred. Time: 0.000648s Benchmarking GradientBoostingRegressor(n_estimators=500) Complexity: 500 | MSE: 3473.6361 | Pred. Time: 0.000897s
Conclusion
As a conclusion, we can deduce the following insights:
- a model which is more complex (or expressive) will require a larger training time;
- a more complex model does not guarantee to reduce the prediction error.
These aspects are related to model generalization and avoiding model under-fitting or over-fitting.
Total running time of the script: ( 0 minutes 37.708 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/applications/plot_model_complexity_influence.html