SVM-Anova: SVM with univariate feature selection
This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification scores. We use the iris dataset (4 features) and add 36 non-informative features. We can find that our model achieves best performance when we select around 10% of features.
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.feature_selection import SelectPercentile, chi2 from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # ############################################################################# # Import some data to play with X, y = load_iris(return_X_y=True) # Add non-informative features np.random.seed(0) X = np.hstack((X, 2 * np.random.random((X.shape[0], 36)))) # ############################################################################# # Create a feature-selection transform, a scaler and an instance of SVM that we # combine together to have an full-blown estimator clf = Pipeline([('anova', SelectPercentile(chi2)), ('scaler', StandardScaler()), ('svc', SVC(gamma="auto"))]) # ############################################################################# # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) this_scores = cross_val_score(clf, X, y) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xticks(np.linspace(0, 100, 11, endpoint=True)) plt.xlabel('Percentile') plt.ylabel('Accuracy Score') plt.axis('tight') plt.show()
Total running time of the script: ( 0 minutes 0.611 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/svm/plot_svm_anova.html