sklearn.linear_model.LinearRegression
-
class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False)[source] -
Ordinary least squares Linear Regression.
LinearRegression fits a linear model with coefficients w = (w1, …, wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.
- Parameters
-
-
fit_interceptbool, default=True -
Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).
-
normalizebool, default=False -
This parameter is ignored when
fit_interceptis set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please useStandardScalerbefore callingfiton an estimator withnormalize=False. -
copy_Xbool, default=True -
If True, X will be copied; else, it may be overwritten.
-
n_jobsint, default=None -
The number of jobs to use for the computation. This will only provide speedup for n_targets > 1 and sufficient large problems.
Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details. -
positivebool, default=False -
When set to
True, forces the coefficients to be positive. This option is only supported for dense arrays.New in version 0.24.
-
- Attributes
-
-
coef_array of shape (n_features, ) or (n_targets, n_features) -
Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features.
-
rank_int -
Rank of matrix
X. Only available whenXis dense. -
singular_array of shape (min(X, y),) -
Singular values of
X. Only available whenXis dense. -
intercept_float or array of shape (n_targets,) -
Independent term in the linear model. Set to 0.0 if
fit_intercept = False.
-
See also
-
Ridge -
Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with l2 regularization.
-
Lasso -
The Lasso is a linear model that estimates sparse coefficients with l1 regularization.
-
ElasticNet -
Elastic-Net is a linear regression model trained with both l1 and l2 -norm regularization of the coefficients.
Notes
From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares (scipy.optimize.nnls) wrapped as a predictor object.
Examples
>>> import numpy as np >>> from sklearn.linear_model import LinearRegression >>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) >>> # y = 1 * x_0 + 2 * x_1 + 3 >>> y = np.dot(X, np.array([1, 2])) + 3 >>> reg = LinearRegression().fit(X, y) >>> reg.score(X, y) 1.0 >>> reg.coef_ array([1., 2.]) >>> reg.intercept_ 3.0000... >>> reg.predict(np.array([[3, 5]])) array([16.])
Methods
fit(X, y[, sample_weight])Fit linear model.
get_params([deep])Get parameters for this estimator.
predict(X)Predict using the linear model.
score(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction.
set_params(**params)Set the parameters of this estimator.
-
fit(X, y, sample_weight=None)[source] -
Fit linear model.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features) -
Training data
-
yarray-like of shape (n_samples,) or (n_samples, n_targets) -
Target values. Will be cast to X’s dtype if necessary
-
sample_weightarray-like of shape (n_samples,), default=None -
Individual weights for each sample
New in version 0.17: parameter sample_weight support to LinearRegression.
-
- Returns
-
-
selfreturns an instance of self.
-
-
get_params(deep=True)[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True -
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict -
Parameter names mapped to their values.
-
-
predict(X)[source] -
Predict using the linear model.
- Parameters
-
-
Xarray-like or sparse matrix, shape (n_samples, n_features) -
Samples.
-
- Returns
-
-
Carray, shape (n_samples,) -
Returns predicted values.
-
-
score(X, y, sample_weight=None)[source] -
Return the coefficient of determination \(R^2\) of the prediction.
The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred) ** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator. -
yarray-like of shape (n_samples,) or (n_samples, n_outputs) -
True values for
X. -
sample_weightarray-like of shape (n_samples,), default=None -
Sample weights.
-
- Returns
-
-
scorefloat -
\(R^2\) of
self.predict(X)wrt.y.
-
Notes
The \(R^2\) score used when calling
scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
-
set_params(**params)[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict -
Estimator parameters.
-
- Returns
-
-
selfestimator instance -
Estimator instance.
-
Examples using sklearn.linear_model.LinearRegression
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.LinearRegression.html