sklearn.kernel_approximation.Nystroem
-
class sklearn.kernel_approximation.Nystroem(kernel='rbf', *, gamma=None, coef0=None, degree=None, kernel_params=None, n_components=100, random_state=None, n_jobs=None)
[source] -
Approximate a kernel map using a subset of the training data.
Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis.
Read more in the User Guide.
New in version 0.13.
- Parameters
-
-
kernelstring or callable, default=’rbf’
-
Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number.
-
gammafloat, default=None
-
Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels.
-
coef0float, default=None
-
Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.
-
degreefloat, default=None
-
Degree of the polynomial kernel. Ignored by other kernels.
-
kernel_paramsdict, default=None
-
Additional parameters (keyword arguments) for kernel function passed as callable object.
-
n_componentsint, default=100
-
Number of features to construct. How many data points will be used to construct the mapping.
-
random_stateint, RandomState instance or None, default=None
-
Pseudo-random number generator to control the uniform sampling without replacement of n_components of the training data to construct the basis kernel. Pass an int for reproducible output across multiple function calls. See Glossary.
-
n_jobsint, default=None
-
The number of jobs to use for the computation. This works by breaking down the kernel matrix into n_jobs even slices and computing them in parallel.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.New in version 0.24.
-
- Attributes
-
-
components_ndarray of shape (n_components, n_features)
-
Subset of training points used to construct the feature map.
-
component_indices_ndarray of shape (n_components)
-
Indices of
components_
in the training set. -
normalization_ndarray of shape (n_components, n_components)
-
Normalization matrix needed for embedding. Square root of the kernel matrix on
components_
.
-
See also
-
RBFSampler
-
An approximation to the RBF kernel using random Fourier features.
-
sklearn.metrics.pairwise.kernel_metrics
-
List of built-in kernels.
References
- Williams, C.K.I. and Seeger, M. “Using the Nystroem method to speed up kernel machines”, Advances in neural information processing systems 2001
- T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou “Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison”, Advances in Neural Information Processing Systems 2012
Examples
>>> from sklearn import datasets, svm >>> from sklearn.kernel_approximation import Nystroem >>> X, y = datasets.load_digits(n_class=9, return_X_y=True) >>> data = X / 16. >>> clf = svm.LinearSVC() >>> feature_map_nystroem = Nystroem(gamma=.2, ... random_state=1, ... n_components=300) >>> data_transformed = feature_map_nystroem.fit_transform(data) >>> clf.fit(data_transformed, y) LinearSVC() >>> clf.score(data_transformed, y) 0.9987...
Methods
fit
(X[, y])Fit estimator to data.
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Apply feature map to X.
-
fit(X, y=None)
[source] -
Fit estimator to data.
Samples a subset of training points, computes kernel on these and computes normalization matrix.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Training data.
-
-
fit_transform(X, y=None, **fit_params)
[source] -
Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
-
Target values (None for unsupervised transformations).
-
**fit_paramsdict
-
Additional fit parameters.
-
- Returns
-
-
X_newndarray array of shape (n_samples, n_features_new)
-
Transformed array.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
-
transform(X)
[source] -
Apply feature map to X.
Computes an approximate feature map using the kernel between some training points and X.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Data to transform.
-
- Returns
-
-
X_transformedndarray of shape (n_samples, n_components)
-
Transformed data.
-
Examples using sklearn.kernel_approximation.Nystroem
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.kernel_approximation.Nystroem.html