sklearn.utils.as_float_array
-
sklearn.utils.as_float_array(X, *, copy=True, force_all_finite=True)
[source] -
Converts an array-like to an array of floats.
The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy.
- Parameters
-
-
X{array-like, sparse matrix}
-
copybool, default=True
-
If True, a copy of X will be created. If False, a copy may still be returned if X’s dtype is not a floating point type.
-
force_all_finitebool or ‘allow-nan’, default=True
-
Whether to raise an error on np.inf, np.nan, pd.NA in X. The possibilities are:
- True: Force all values of X to be finite.
- False: accepts np.inf, np.nan, pd.NA in X.
- ‘allow-nan’: accepts only np.nan and pd.NA values in X. Values cannot be infinite.
New in version 0.20:
force_all_finite
accepts the string'allow-nan'
.Changed in version 0.23: Accepts
pd.NA
and converts it intonp.nan
-
- Returns
-
-
XT{ndarray, sparse matrix}
-
An array of type float.
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.utils.as_float_array.html