sklearn.datasets.make_gaussian_quantiles
-
sklearn.datasets.make_gaussian_quantiles(*, mean=None, cov=1.0, n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None)
[source] -
Generate isotropic Gaussian and label samples by quantile.
This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the \(\chi^2\) distribution).
Read more in the User Guide.
- Parameters
-
-
meanndarray of shape (n_features,), default=None
-
The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, …).
-
covfloat, default=1.0
-
The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions.
-
n_samplesint, default=100
-
The total number of points equally divided among classes.
-
n_featuresint, default=2
-
The number of features for each sample.
-
n_classesint, default=3
-
The number of classes
-
shufflebool, default=True
-
Shuffle the samples.
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Returns
-
-
Xndarray of shape (n_samples, n_features)
-
The generated samples.
-
yndarray of shape (n_samples,)
-
The integer labels for quantile membership of each sample.
-
Notes
The dataset is from Zhu et al [1].
References
-
1
-
- Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.
Examples using sklearn.datasets.make_gaussian_quantiles
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_gaussian_quantiles.html