sklearn.datasets.make_multilabel_classification
-
sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20, *, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None)
[source] -
Generate a random multilabel classification problem.
- For each sample, the generative process is:
-
- pick the number of labels: n ~ Poisson(n_labels)
- n times, choose a class c: c ~ Multinomial(theta)
- pick the document length: k ~ Poisson(length)
- k times, choose a word: w ~ Multinomial(theta_c)
In the above process, rejection sampling is used to make sure that n is never zero or more than
n_classes
, and that the document length is never zero. Likewise, we reject classes which have already been chosen.Read more in the User Guide.
- Parameters
-
-
n_samplesint, default=100
-
The number of samples.
-
n_featuresint, default=20
-
The total number of features.
-
n_classesint, default=5
-
The number of classes of the classification problem.
-
n_labelsint, default=2
-
The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with
n_labels
as its expected value, but samples are bounded (using rejection sampling) byn_classes
, and must be nonzero ifallow_unlabeled
is False. -
lengthint, default=50
-
The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value.
-
allow_unlabeledbool, default=True
-
If
True
, some instances might not belong to any class. -
sparsebool, default=False
-
If
True
, return a sparse feature matrixNew in version 0.17: parameter to allow sparse output.
-
return_indicator{‘dense’, ‘sparse’} or False, default=’dense’
-
If
'dense'
returnY
in the dense binary indicator format. If'sparse'
returnY
in the sparse binary indicator format.False
returns a list of lists of labels. -
return_distributionsbool, default=False
-
If
True
, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. -
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Returns
-
-
Xndarray of shape (n_samples, n_features)
-
The generated samples.
-
Y{ndarray, sparse matrix} of shape (n_samples, n_classes)
-
The label sets. Sparse matrix should be of CSR format.
-
p_cndarray of shape (n_classes,)
-
The probability of each class being drawn. Only returned if
return_distributions=True
. -
p_w_cndarray of shape (n_features, n_classes)
-
The probability of each feature being drawn given each class. Only returned if
return_distributions=True
.
-
Examples using sklearn.datasets.make_multilabel_classification
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_multilabel_classification.html