sklearn.multioutput.MultiOutputRegressor
-
class sklearn.multioutput.MultiOutputRegressor(estimator, *, n_jobs=None)
[source] -
Multi target regression
This strategy consists of fitting one regressor per target. This is a simple strategy for extending regressors that do not natively support multi-target regression.
New in version 0.18.
- Parameters
-
-
estimatorestimator object
-
n_jobsint or None, optional (default=None)
-
The number of jobs to run in parallel.
fit
,predict
andpartial_fit
(if supported by the passed estimator) will be parallelized for each target.When individual estimators are fast to train or predict, using
n_jobs > 1
can result in slower performance due to the parallelism overhead.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all available processes / threads. See Glossary for more details.Changed in version 0.20:
n_jobs
default changed from 1 to None
-
- Attributes
-
-
estimators_list of n_output estimators
-
Estimators used for predictions.
-
Examples
>>> import numpy as np >>> from sklearn.datasets import load_linnerud >>> from sklearn.multioutput import MultiOutputRegressor >>> from sklearn.linear_model import Ridge >>> X, y = load_linnerud(return_X_y=True) >>> clf = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y) >>> clf.predict(X[[0]]) array([[176..., 35..., 57...]])
Methods
fit
(X, y[, sample_weight])Fit the model to data.
get_params
([deep])Get parameters for this estimator.
partial_fit
(X, y[, sample_weight])Incrementally fit the model to data.
predict
(X)Predict multi-output variable using a model
score
(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y, sample_weight=None, **fit_params)
[source] -
Fit the model to data. Fit a separate model for each output variable.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Data.
-
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
-
Multi-output targets. An indicator matrix turns on multilabel estimation.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
-
**fit_paramsdict of string -> object
-
Parameters passed to the
estimator.fit
method of each step.New in version 0.23.
-
- Returns
-
-
selfobject
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
partial_fit(X, y, sample_weight=None)
[source] -
Incrementally fit the model to data. Fit a separate model for each output variable.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Data.
-
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
-
Multi-output targets.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
-
- Returns
-
-
selfobject
-
-
predict(X)
[source] -
- Predict multi-output variable using a model
-
trained for each target variable.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Data.
-
- Returns
-
-
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
-
Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor.
-
-
score(X, y, sample_weight=None)
[source] -
Return the coefficient of determination \(R^2\) of the prediction.
The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred) ** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy
, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator. -
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
True values for
X
. -
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
scorefloat
-
\(R^2\) of
self.predict(X)
wrt.y
.
-
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
Examples using sklearn.multioutput.MultiOutputRegressor
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.multioutput.MultiOutputRegressor.html