Pipeline Anova SVM
Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a SVM of the selected features.
Using a sub-pipeline, the fitted coefficients can be mapped back into the original feature space.
Out:
precision recall f1-score support 0 0.75 0.50 0.60 6 1 0.67 1.00 0.80 6 2 0.67 0.80 0.73 5 3 1.00 0.75 0.86 8 accuracy 0.76 25 macro avg 0.77 0.76 0.75 25 weighted avg 0.79 0.76 0.76 25 [[-0.23912051 0. 0. 0. -0.32369992 0. 0. 0. 0. 0. 0. 0. 0.1083669 0. 0. 0. 0. 0. 0. 0. ] [ 0.43878897 0. 0. 0. -0.514157 0. 0. 0. 0. 0. 0. 0. 0.04845592 0. 0. 0. 0. 0. 0. 0. ] [-0.65382765 0. 0. 0. 0.57962287 0. 0. 0. 0. 0. 0. 0. -0.04736736 0. 0. 0. 0. 0. 0. 0. ] [ 0.544033 0. 0. 0. 0.58478674 0. 0. 0. 0. 0. 0. 0. -0.11344771 0. 0. 0. 0. 0. 0. 0. ]]
from sklearn import svm from sklearn.datasets import make_classification from sklearn.feature_selection import SelectKBest, f_classif from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report print(__doc__) # import some data to play with X, y = make_classification( n_features=20, n_informative=3, n_redundant=0, n_classes=4, n_clusters_per_class=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # ANOVA SVM-C # 1) anova filter, take 3 best ranked features anova_filter = SelectKBest(f_classif, k=3) # 2) svm clf = svm.LinearSVC() anova_svm = make_pipeline(anova_filter, clf) anova_svm.fit(X_train, y_train) y_pred = anova_svm.predict(X_test) print(classification_report(y_test, y_pred)) coef = anova_svm[:-1].inverse_transform(anova_svm['linearsvc'].coef_) print(coef)
Total running time of the script: ( 0 minutes 0.022 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/feature_selection/plot_feature_selection_pipeline.html