sklearn.kernel_approximation.RBFSampler
-
class sklearn.kernel_approximation.RBFSampler(*, gamma=1.0, n_components=100, random_state=None)
[source] -
Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform.
It implements a variant of Random Kitchen Sinks.[1]
Read more in the User Guide.
- Parameters
-
-
gammafloat, default=1.0
-
Parameter of RBF kernel: exp(-gamma * x^2)
-
n_componentsint, default=100
-
Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space.
-
random_stateint, RandomState instance or None, default=None
-
Pseudo-random number generator to control the generation of the random weights and random offset when fitting the training data. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Attributes
-
-
random_offset_ndarray of shape (n_components,), dtype=float64
-
Random offset used to compute the projection in the
n_components
dimensions of the feature space. -
random_weights_ndarray of shape (n_features, n_components), dtype=float64
-
Random projection directions drawn from the Fourier transform of the RBF kernel.
-
Notes
See “Random Features for Large-Scale Kernel Machines” by A. Rahimi and Benjamin Recht.
[1] “Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning” by A. Rahimi and Benjamin Recht. (https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)
Examples
>>> from sklearn.kernel_approximation import RBFSampler >>> from sklearn.linear_model import SGDClassifier >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] >>> y = [0, 0, 1, 1] >>> rbf_feature = RBFSampler(gamma=1, random_state=1) >>> X_features = rbf_feature.fit_transform(X) >>> clf = SGDClassifier(max_iter=5, tol=1e-3) >>> clf.fit(X_features, y) SGDClassifier(max_iter=5) >>> clf.score(X_features, y) 1.0
Methods
fit
(X[, y])Fit the model with X.
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Apply the approximate feature map to X.
-
fit(X, y=None)
[source] -
Fit the model with X.
Samples random projection according to n_features.
- Parameters
-
-
X{array-like, sparse matrix}, shape (n_samples, n_features)
-
Training data, where n_samples in the number of samples and n_features is the number of features.
-
- Returns
-
-
selfobject
-
Returns the transformer.
-
-
fit_transform(X, y=None, **fit_params)
[source] -
Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Input samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
-
Target values (None for unsupervised transformations).
-
**fit_paramsdict
-
Additional fit parameters.
-
- Returns
-
-
X_newndarray array of shape (n_samples, n_features_new)
-
Transformed array.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
-
transform(X)
[source] -
Apply the approximate feature map to X.
- Parameters
-
-
X{array-like, sparse matrix}, shape (n_samples, n_features)
-
New data, where n_samples in the number of samples and n_features is the number of features.
-
- Returns
-
-
X_newarray-like, shape (n_samples, n_components)
-
Examples using sklearn.kernel_approximation.RBFSampler
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.kernel_approximation.RBFSampler.html