Recursive feature elimination
A recursive feature elimination example showing the relevance of pixels in a digit classification task.
Note
See also Recursive feature elimination with cross-validation
print(__doc__) from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.feature_selection import RFE import matplotlib.pyplot as plt # Load the digits dataset digits = load_digits() X = digits.images.reshape((len(digits.images), -1)) y = digits.target # Create the RFE object and rank each pixel svc = SVC(kernel="linear", C=1) rfe = RFE(estimator=svc, n_features_to_select=1, step=1) rfe.fit(X, y) ranking = rfe.ranking_.reshape(digits.images[0].shape) # Plot pixel ranking plt.matshow(ranking, cmap=plt.cm.Blues) plt.colorbar() plt.title("Ranking of pixels with RFE") plt.show()
Total running time of the script: ( 0 minutes 6.966 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/feature_selection/plot_rfe_digits.html