sklearn.metrics.DetCurveDisplay
- 
class sklearn.metrics.DetCurveDisplay(*, fpr, fnr, estimator_name=None, pos_label=None)[source] - 
DET curve visualization.
It is recommend to use
plot_det_curveto create a visualizer. All parameters are stored as attributes.Read more in the User Guide.
New in version 0.24.
- Parameters
 - 
- 
fprndarray - 
False positive rate.
 - 
tprndarray - 
True positive rate.
 - 
estimator_namestr, default=None - 
Name of estimator. If None, the estimator name is not shown.
 - 
pos_labelstr or int, default=None - 
The label of the positive class.
 
 - 
 - Attributes
 - 
- 
line_matplotlib Artist - 
DET Curve.
 - 
ax_matplotlib Axes - 
Axes with DET Curve.
 - 
figure_matplotlib Figure - 
Figure containing the curve.
 
 - 
 
See also
- 
 
det_curve - 
Compute error rates for different probability thresholds.
 - 
 
plot_det_curve - 
Plot detection error tradeoff (DET) curve.
 
Examples
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([0, 0, 1, 1]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, fnr, thresholds = metrics.det_curve(y, pred) >>> display = metrics.DetCurveDisplay( ... fpr=fpr, fnr=fnr, estimator_name='example estimator' ... ) >>> display.plot() >>> plt.show()
Methods
plot([ax, name])Plot visualization.
- 
plot(ax=None, *, name=None, **kwargs)[source] - 
Plot visualization.
- Parameters
 - 
- 
axmatplotlib axes, default=None - 
Axes object to plot on. If
None, a new figure and axes is created. - 
namestr, default=None - 
Name of DET curve for labeling. If
None, use the name of the estimator. 
 - 
 - Returns
 - 
- 
displayDetCurveDisplay - 
Object that stores computed values.
 
 - 
 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.DetCurveDisplay.html