sklearn.metrics.plot_confusion_matrix
-
sklearn.metrics.plot_confusion_matrix(estimator, X, y_true, *, labels=None, sample_weight=None, normalize=None, display_labels=None, include_values=True, xticks_rotation='horizontal', values_format=None, cmap='viridis', ax=None, colorbar=True)
[source] -
Plot Confusion Matrix.
Read more in the User Guide.
- Parameters
-
-
estimatorestimator instance
-
Fitted classifier or a fitted
Pipeline
in which the last estimator is a classifier. -
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Input values.
-
y_truearray-like of shape (n_samples,)
-
Target values.
-
labelsarray-like of shape (n_classes,), default=None
-
List of labels to index the matrix. This may be used to reorder or select a subset of labels. If
None
is given, those that appear at least once iny_true
ory_pred
are used in sorted order. -
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
normalize{‘true’, ‘pred’, ‘all’}, default=None
-
Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.
-
display_labelsarray-like of shape (n_classes,), default=None
-
Target names used for plotting. By default,
labels
will be used if it is defined, otherwise the unique labels ofy_true
andy_pred
will be used. -
include_valuesbool, default=True
-
Includes values in confusion matrix.
-
xticks_rotation{‘vertical’, ‘horizontal’} or float, default=’horizontal’
-
Rotation of xtick labels.
-
values_formatstr, default=None
-
Format specification for values in confusion matrix. If
None
, the format specification is ‘d’ or ‘.2g’ whichever is shorter. -
cmapstr or matplotlib Colormap, default=’viridis’
-
Colormap recognized by matplotlib.
-
axmatplotlib Axes, default=None
-
Axes object to plot on. If
None
, a new figure and axes is created. -
colorbarbool, default=True
-
Whether or not to add a colorbar to the plot.
New in version 0.24.
-
- Returns
-
-
displayConfusionMatrixDisplay
-
See also
-
confusion_matrix
-
Compute Confusion Matrix to evaluate the accuracy of a classification.
-
ConfusionMatrixDisplay
-
Confusion Matrix visualization.
Examples
>>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.metrics import plot_confusion_matrix >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> plot_confusion_matrix(clf, X_test, y_test) >>> plt.show()
Examples using sklearn.metrics.plot_confusion_matrix
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.plot_confusion_matrix.html