sklearn.datasets.make_sparse_coded_signal
-
sklearn.datasets.make_sparse_coded_signal(n_samples, *, n_components, n_features, n_nonzero_coefs, random_state=None)
[source] -
Generate a signal as a sparse combination of dictionary elements.
Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements.
Read more in the User Guide.
- Parameters
-
-
n_samplesint
-
Number of samples to generate
-
n_componentsint
-
Number of components in the dictionary
-
n_featuresint
-
Number of features of the dataset to generate
-
n_nonzero_coefsint
-
Number of active (non-zero) coefficients in each sample
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Returns
-
-
datandarray of shape (n_features, n_samples)
-
The encoded signal (Y).
-
dictionaryndarray of shape (n_features, n_components)
-
The dictionary with normalized components (D).
-
codendarray of shape (n_components, n_samples)
-
The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X).
-
Examples using sklearn.datasets.make_sparse_coded_signal
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_sparse_coded_signal.html