sklearn.datasets.make_hastie_10_2
-
sklearn.datasets.make_hastie_10_2(n_samples=12000, *, random_state=None)
[source] -
Generates data for binary classification used in Hastie et al. 2009, Example 10.2.
The ten features are standard independent Gaussian and the target
y
is defined by:y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1
Read more in the User Guide.
- Parameters
-
-
n_samplesint, default=12000
-
The number of samples.
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Returns
-
-
Xndarray of shape (n_samples, 10)
-
The input samples.
-
yndarray of shape (n_samples,)
-
The output values.
-
See also
-
make_gaussian_quantiles
-
A generalization of this dataset approach.
References
-
1
-
T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.
Examples using sklearn.datasets.make_hastie_10_2
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_hastie_10_2.html