sklearn.metrics.cluster.contingency_matrix
-
sklearn.metrics.cluster.contingency_matrix(labels_true, labels_pred, *, eps=None, sparse=False, dtype=<class 'numpy.int64'>)
[source] -
Build a contingency matrix describing the relationship between labels.
- Parameters
-
-
labels_trueint array, shape = [n_samples]
-
Ground truth class labels to be used as a reference.
-
labels_predarray-like of shape (n_samples,)
-
Cluster labels to evaluate.
-
epsfloat, default=None
-
If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If
None
, nothing is adjusted. -
sparsebool, default=False
-
If
True
, return a sparse CSR continency matrix. Ifeps
is notNone
andsparse
isTrue
will raise ValueError.New in version 0.18.
-
dtypenumeric type, default=np.int64
-
Output dtype. Ignored if
eps
is notNone
.New in version 0.24.
-
- Returns
-
-
contingency{array-like, sparse}, shape=[n_classes_true, n_classes_pred]
-
Matrix \(C\) such that \(C_{i, j}\) is the number of samples in true class \(i\) and in predicted class \(j\). If
eps is None
, the dtype of this array will be integer unless set otherwise with thedtype
argument. Ifeps
is given, the dtype will be float. Will be asklearn.sparse.csr_matrix
ifsparse=True
.
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.cluster.contingency_matrix.html