sklearn.manifold.locally_linear_embedding
-
sklearn.manifold.locally_linear_embedding(X, *, n_neighbors, n_components, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, random_state=None, n_jobs=None)
[source] -
Perform a Locally Linear Embedding analysis on the data.
Read more in the User Guide.
- Parameters
-
-
X{array-like, NearestNeighbors}
-
Sample data, shape = (n_samples, n_features), in the form of a numpy array or a NearestNeighbors object.
-
n_neighborsint
-
number of neighbors to consider for each point.
-
n_componentsint
-
number of coordinates for the manifold.
-
regfloat, default=1e-3
-
regularization constant, multiplies the trace of the local covariance matrix of the distances.
-
eigen_solver{‘auto’, ‘arpack’, ‘dense’}, default=’auto’
-
auto : algorithm will attempt to choose the best method for input data
-
arpackuse arnoldi iteration in shift-invert mode.
-
For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results.
-
denseuse standard dense matrix operations for the eigenvalue
-
decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems.
-
-
tolfloat, default=1e-6
-
Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.
-
max_iterint, default=100
-
maximum number of iterations for the arpack solver.
-
method{‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}, default=’standard’
-
-
standarduse the standard locally linear embedding algorithm.
-
see reference [1]
-
hessianuse the Hessian eigenmap method. This method requires
-
n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]
-
modifieduse the modified locally linear embedding algorithm.
-
see reference [3]
-
ltsause local tangent space alignment algorithm
-
see reference [4]
-
-
hessian_tolfloat, default=1e-4
-
Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’
-
modified_tolfloat, default=1e-12
-
Tolerance for modified LLE method. Only used if method == ‘modified’
-
random_stateint, RandomState instance, default=None
-
Determines the random number generator when
solver
== ‘arpack’. Pass an int for reproducible results across multiple function calls. See :term:Glossary <random_state>
. -
n_jobsint or None, default=None
-
The number of parallel jobs to run for neighbors search.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
-
- Returns
-
-
Yarray-like, shape [n_samples, n_components]
-
Embedding vectors.
-
squared_errorfloat
-
Reconstruction error for the embedding vectors. Equivalent to
norm(Y - W Y, 'fro')**2
, where W are the reconstruction weights.
-
References
-
1
-
Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).
-
2
-
Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).
-
3
-
Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
-
4
-
Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)
Examples using sklearn.manifold.locally_linear_embedding
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.manifold.locally_linear_embedding.html