sklearn.datasets.make_sparse_uncorrelated
-
Generate a random regression problem with sparse uncorrelated design.
This dataset is described in Celeux et al [1]. as:
X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]
Only the first 4 features are informative. The remaining features are useless.
Read more in the User Guide.
- Parameters
-
-
n_samplesint, default=100
-
The number of samples.
-
n_featuresint, default=10
-
The number of features.
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Returns
-
-
Xndarray of shape (n_samples, n_features)
-
The input samples.
-
yndarray of shape (n_samples,)
-
The output values.
-
References
-
1
-
G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, “Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation”, 2009.
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_sparse_uncorrelated.html