sklearn.linear_model.TheilSenRegressor
-
class sklearn.linear_model.TheilSenRegressor(*, fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None, max_iter=300, tol=0.001, random_state=None, n_jobs=None, verbose=False)
[source] -
Theil-Sen Estimator: robust multivariate regression model.
The algorithm calculates least square solutions on subsets with size n_subsamples of the samples in X. Any value of n_subsamples between the number of features and samples leads to an estimator with a compromise between robustness and efficiency. Since the number of least square solutions is “n_samples choose n_subsamples”, it can be extremely large and can therefore be limited with max_subpopulation. If this limit is reached, the subsets are chosen randomly. In a final step, the spatial median (or L1 median) is calculated of all least square solutions.
Read more in the User Guide.
- Parameters
-
-
fit_interceptbool, default=True
-
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations.
-
copy_Xbool, default=True
-
If True, X will be copied; else, it may be overwritten.
-
max_subpopulationint, default=1e4
-
Instead of computing with a set of cardinality ‘n choose k’, where n is the number of samples and k is the number of subsamples (at least number of features), consider only a stochastic subpopulation of a given maximal size if ‘n choose k’ is larger than max_subpopulation. For other than small problem sizes this parameter will determine memory usage and runtime if n_subsamples is not changed.
-
n_subsamplesint, default=None
-
Number of samples to calculate the parameters. This is at least the number of features (plus 1 if fit_intercept=True) and the number of samples as a maximum. A lower number leads to a higher breakdown point and a low efficiency while a high number leads to a low breakdown point and a high efficiency. If None, take the minimum number of subsamples leading to maximal robustness. If n_subsamples is set to n_samples, Theil-Sen is identical to least squares.
-
max_iterint, default=300
-
Maximum number of iterations for the calculation of spatial median.
-
tolfloat, default=1.e-3
-
Tolerance when calculating spatial median.
-
random_stateint, RandomState instance or None, default=None
-
A random number generator instance to define the state of the random permutations generator. Pass an int for reproducible output across multiple function calls. See Glossary
-
n_jobsint, default=None
-
Number of CPUs to use during the cross validation.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details. -
verbosebool, default=False
-
Verbose mode when fitting the model.
-
- Attributes
-
-
coef_ndarray of shape (n_features,)
-
Coefficients of the regression model (median of distribution).
-
intercept_float
-
Estimated intercept of regression model.
-
breakdown_float
-
Approximated breakdown point.
-
n_iter_int
-
Number of iterations needed for the spatial median.
-
n_subpopulation_int
-
Number of combinations taken into account from ‘n choose k’, where n is the number of samples and k is the number of subsamples.
-
References
- Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang http://home.olemiss.edu/~xdang/papers/MTSE.pdf
Examples
>>> from sklearn.linear_model import TheilSenRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression( ... n_samples=200, n_features=2, noise=4.0, random_state=0) >>> reg = TheilSenRegressor(random_state=0).fit(X, y) >>> reg.score(X, y) 0.9884... >>> reg.predict(X[:1,]) array([-31.5871...])
Methods
fit
(X, y)Fit linear model.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the linear model.
score
(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y)
[source] -
Fit linear model.
- Parameters
-
-
Xndarray of shape (n_samples, n_features)
-
Training data.
-
yndarray of shape (n_samples,)
-
Target values.
-
- Returns
-
-
selfreturns an instance of self.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
predict(X)
[source] -
Predict using the linear model.
- Parameters
-
-
Xarray-like or sparse matrix, shape (n_samples, n_features)
-
Samples.
-
- Returns
-
-
Carray, shape (n_samples,)
-
Returns predicted values.
-
-
score(X, y, sample_weight=None)
[source] -
Return the coefficient of determination \(R^2\) of the prediction.
The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred) ** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy
, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator. -
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
True values for
X
. -
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
scorefloat
-
\(R^2\) of
self.predict(X)
wrt.y
.
-
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
Examples using sklearn.linear_model.TheilSenRegressor
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.TheilSenRegressor.html