Plot individual and voting regression predictions
A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it averages the individual predictions to form a final prediction. We will use three different regressors to predict the data: GradientBoostingRegressor
, RandomForestRegressor
, and LinearRegression
). Then the above 3 regressors will be used for the VotingRegressor
.
Finally, we will plot the predictions made by all models for comparison.
We will work with the diabetes dataset which consists of 10 features collected from a cohort of diabetes patients. The target is a quantitative measure of disease progression one year after baseline.
print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import load_diabetes from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.ensemble import VotingRegressor
Training classifiers
First, we will load the diabetes dataset and initiate a gradient boosting regressor, a random forest regressor and a linear regression. Next, we will use the 3 regressors to build the voting regressor:
X, y = load_diabetes(return_X_y=True) # Train classifiers reg1 = GradientBoostingRegressor(random_state=1) reg2 = RandomForestRegressor(random_state=1) reg3 = LinearRegression() reg1.fit(X, y) reg2.fit(X, y) reg3.fit(X, y) ereg = VotingRegressor([('gb', reg1), ('rf', reg2), ('lr', reg3)]) ereg.fit(X, y)
Making predictions
Now we will use each of the regressors to make the 20 first predictions.
xt = X[:20] pred1 = reg1.predict(xt) pred2 = reg2.predict(xt) pred3 = reg3.predict(xt) pred4 = ereg.predict(xt)
Plot the results
Finally, we will visualize the 20 predictions. The red stars show the average prediction made by VotingRegressor
.
plt.figure() plt.plot(pred1, 'gd', label='GradientBoostingRegressor') plt.plot(pred2, 'b^', label='RandomForestRegressor') plt.plot(pred3, 'ys', label='LinearRegression') plt.plot(pred4, 'r*', ms=10, label='VotingRegressor') plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) plt.ylabel('predicted') plt.xlabel('training samples') plt.legend(loc="best") plt.title('Regressor predictions and their average') plt.show()
Total running time of the script: ( 0 minutes 1.229 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/ensemble/plot_voting_regressor.html