sklearn.cross_decomposition.PLSRegression
-
class sklearn.cross_decomposition.PLSRegression(n_components=2, *, scale=True, max_iter=500, tol=1e-06, copy=True)[source] -
PLS regression
PLSRegression is also known as PLS2 or PLS1, depending on the number of targets.
Read more in the User Guide.
New in version 0.8.
- Parameters
-
-
n_componentsint, default=2 -
Number of components to keep. Should be in
[1, min(n_samples, n_features, n_targets)]. -
scalebool, default=True -
Whether to scale
XandY. -
algorithm{‘nipals’, ‘svd’}, default=’nipals’ -
The algorithm used to estimate the first singular vectors of the cross-covariance matrix. ‘nipals’ uses the power method while ‘svd’ will compute the whole SVD.
-
max_iterint, default=500 -
The maximum number of iterations of the power method when
algorithm='nipals'. Ignored otherwise. -
tolfloat, default=1e-06 -
The tolerance used as convergence criteria in the power method: the algorithm stops whenever the squared norm of
u_i - u_{i-1}is less thantol, whereucorresponds to the left singular vector. -
copybool, default=True -
Whether to copy
XandYin fit before applying centering, and potentially scaling. If False, these operations will be done inplace, modifying both arrays.
-
- Attributes
-
-
x_weights_ndarray of shape (n_features, n_components) -
The left singular vectors of the cross-covariance matrices of each iteration.
-
y_weights_ndarray of shape (n_targets, n_components) -
The right singular vectors of the cross-covariance matrices of each iteration.
-
x_loadings_ndarray of shape (n_features, n_components) -
The loadings of
X. -
y_loadings_ndarray of shape (n_targets, n_components) -
The loadings of
Y. -
x_scores_ndarray of shape (n_samples, n_components) -
The transformed training samples.
-
y_scores_ndarray of shape (n_samples, n_components) -
The transformed training targets.
-
x_rotations_ndarray of shape (n_features, n_components) -
The projection matrix used to transform
X. -
y_rotations_ndarray of shape (n_features, n_components) -
The projection matrix used to transform
Y. -
coef_ndarray of shape (n_features, n_targets) -
The coefficients of the linear model such that
Yis approximated asY = X @ coef_. -
n_iter_list of shape (n_components,) -
Number of iterations of the power method, for each component. Empty if
algorithm='svd'.
-
Examples
>>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) PLSRegression() >>> Y_pred = pls2.predict(X)
Methods
fit(X, Y)Fit model to data.
fit_transform(X[, y])Learn and apply the dimension reduction on the train data.
get_params([deep])Get parameters for this estimator.
Transform data back to its original space.
predict(X[, copy])Predict targets of given samples.
score(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction.
set_params(**params)Set the parameters of this estimator.
transform(X[, Y, copy])Apply the dimension reduction.
-
fit(X, Y)[source] -
Fit model to data.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Training vectors, where
n_samplesis the number of samples andn_featuresis the number of predictors. -
Yarray-like of shape (n_samples,) or (n_samples, n_targets) -
Target vectors, where
n_samplesis the number of samples andn_targetsis the number of response variables.
-
-
fit_transform(X, y=None)[source] -
Learn and apply the dimension reduction on the train data.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Training vectors, where n_samples is the number of samples and n_features is the number of predictors.
-
yarray-like of shape (n_samples, n_targets), default=None -
Target vectors, where n_samples is the number of samples and n_targets is the number of response variables.
-
- Returns
-
- x_scores if Y is not given, (x_scores, y_scores) otherwise.
-
get_params(deep=True)[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True -
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict -
Parameter names mapped to their values.
-
-
inverse_transform(X)[source] -
Transform data back to its original space.
- Parameters
-
-
Xarray-like of shape (n_samples, n_components) -
New data, where
n_samplesis the number of samples andn_componentsis the number of pls components.
-
- Returns
-
-
x_reconstructedarray-like of shape (n_samples, n_features)
-
Notes
This transformation will only be exact if
n_components=n_features.
-
predict(X, copy=True)[source] -
Predict targets of given samples.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Samples.
-
copybool, default=True -
Whether to copy
XandY, or perform in-place normalization.
-
Notes
This call requires the estimation of a matrix of shape
(n_features, n_targets), which may be an issue in high dimensional space.
-
score(X, y, sample_weight=None)[source] -
Return the coefficient of determination \(R^2\) of the prediction.
The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred) ** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator. -
yarray-like of shape (n_samples,) or (n_samples, n_outputs) -
True values for
X. -
sample_weightarray-like of shape (n_samples,), default=None -
Sample weights.
-
- Returns
-
-
scorefloat -
\(R^2\) of
self.predict(X)wrt.y.
-
Notes
The \(R^2\) score used when calling
scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
-
set_params(**params)[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict -
Estimator parameters.
-
- Returns
-
-
selfestimator instance -
Estimator instance.
-
-
transform(X, Y=None, copy=True)[source] -
Apply the dimension reduction.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Samples to transform.
-
Yarray-like of shape (n_samples, n_targets), default=None -
Target vectors.
-
copybool, default=True -
Whether to copy
XandY, or perform in-place normalization.
-
- Returns
-
-
x_scores if Y is not given, (x_scores, y_scores) otherwise.
-
Examples using sklearn.cross_decomposition.PLSRegression
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.cross_decomposition.PLSRegression.html