sklearn.linear_model.OrthogonalMatchingPursuitCV
-
class sklearn.linear_model.OrthogonalMatchingPursuitCV(*, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=None, verbose=False)
[source] -
Cross-validated Orthogonal Matching Pursuit model (OMP).
See glossary entry for cross-validation estimator.
Read more in the User Guide.
- Parameters
-
-
copybool, default=True
-
Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway.
-
fit_interceptbool, default=True
-
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
-
normalizebool, default=True
-
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please useStandardScaler
before callingfit
on an estimator withnormalize=False
. -
max_iterint, default=None
-
Maximum numbers of iterations to perform, therefore maximum features to include. 10% of
n_features
but at least 5 if available. -
cvint, cross-validation generator or iterable, default=None
-
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs,
KFold
is used.Refer User Guide for the various cross-validation strategies that can be used here.
Changed in version 0.22:
cv
default value if None changed from 3-fold to 5-fold. -
n_jobsint, default=None
-
Number of CPUs to use during the cross validation.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details. -
verbosebool or int, default=False
-
Sets the verbosity amount.
-
- Attributes
-
-
intercept_float or ndarray of shape (n_targets,)
-
Independent term in decision function.
-
coef_ndarray of shape (n_features,) or (n_targets, n_features)
-
Parameter vector (w in the problem formulation).
-
n_nonzero_coefs_int
-
Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds.
-
n_iter_int or array-like
-
Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds.
-
See also
Examples
>>> from sklearn.linear_model import OrthogonalMatchingPursuitCV >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_features=100, n_informative=10, ... noise=4, random_state=0) >>> reg = OrthogonalMatchingPursuitCV(cv=5).fit(X, y) >>> reg.score(X, y) 0.9991... >>> reg.n_nonzero_coefs_ 10 >>> reg.predict(X[:1,]) array([-78.3854...])
Methods
fit
(X, y)Fit the model using X, y as training data.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the linear model.
score
(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y)
[source] -
Fit the model using X, y as training data.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Training data.
-
yarray-like of shape (n_samples,)
-
Target values. Will be cast to X’s dtype if necessary.
-
- Returns
-
-
selfobject
-
returns an instance of self.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
predict(X)
[source] -
Predict using the linear model.
- Parameters
-
-
Xarray-like or sparse matrix, shape (n_samples, n_features)
-
Samples.
-
- Returns
-
-
Carray, shape (n_samples,)
-
Returns predicted values.
-
-
score(X, y, sample_weight=None)
[source] -
Return the coefficient of determination \(R^2\) of the prediction.
The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred) ** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy
, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator. -
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
-
True values for
X
. -
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
scorefloat
-
\(R^2\) of
self.predict(X)
wrt.y
.
-
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
Examples using sklearn.linear_model.OrthogonalMatchingPursuitCV
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.html