sklearn.datasets.make_blobs
-
sklearn.datasets.make_blobs(n_samples=100, n_features=2, *, centers=None, cluster_std=1.0, center_box=- 10.0, 10.0, shuffle=True, random_state=None, return_centers=False)
[source] -
Generate isotropic Gaussian blobs for clustering.
Read more in the User Guide.
- Parameters
-
-
n_samplesint or array-like, default=100
-
If int, it is the total number of points equally divided among clusters. If array-like, each element of the sequence indicates the number of samples per cluster.
Changed in version v0.20: one can now pass an array-like to the
n_samples
parameter -
n_featuresint, default=2
-
The number of features for each sample.
-
centersint or ndarray of shape (n_centers, n_features), default=None
-
The number of centers to generate, or the fixed center locations. If n_samples is an int and centers is None, 3 centers are generated. If n_samples is array-like, centers must be either None or an array of length equal to the length of n_samples.
-
cluster_stdfloat or array-like of float, default=1.0
-
The standard deviation of the clusters.
-
center_boxtuple of float (min, max), default=(-10.0, 10.0)
-
The bounding box for each cluster center when centers are generated at random.
-
shufflebool, default=True
-
Shuffle the samples.
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
-
return_centersbool, default=False
-
If True, then return the centers of each cluster
New in version 0.23.
-
- Returns
-
-
Xndarray of shape (n_samples, n_features)
-
The generated samples.
-
yndarray of shape (n_samples,)
-
The integer labels for cluster membership of each sample.
-
centersndarray of shape (n_centers, n_features)
-
The centers of each cluster. Only returned if
return_centers=True
.
-
See also
-
make_classification
-
A more intricate variant.
Examples
>>> from sklearn.datasets import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) >>> X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 1, 2, 0, 2, 2, 2, 1, 1, 0])
Examples using sklearn.datasets.make_blobs
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_blobs.html